Search Results

Now showing 1 - 5 of 5
  • Item
    Cap-and-trade of water rights: A sustainable way out of Australia's rural water problems?
    (München : Oekom - Gesellschaft fuer Oekologische Kommunikation mbH, 2014) Burdack, D.; Biewald, A.; Lotze-Campen, H.
    Trading water rights is a tool for re-allocation of water resources in water-scarce regions such as Australia. Tradable water rights help farmers to act flexibly when facing high fluctuations in water availability and to use the water in a sustainable and environmentally friendly manner. A precondition is that the quantity of water rights is capped at an appropriate level. The institutional arrangements and market structures in which water-right trading is embedded are key factors for the success of such water management instruments. By analysing the structure of the water-right market and water caps as well as using results from explorative expert interviews, the article sheds light on potential problems with the Australian cap-and-trade scheme concerning sustainable water usage. It also asks whether the Australian scheme provides lessons to be learnt by other countries facing similar problems.
  • Item
    The theory of virtual water: Why it can help to understand local water scarcity
    (München : Oekom - Gesellschaft fuer Oekologische Kommunikation mbH, 2012) Biewald, A.; Rolinski, S.
    [No abstract available]
  • Item
    Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6
    (Göttingen : Copernicus GmbH, 2018) Rolinski, S.; Müller, C.; Heinke, J.; Weindl, I.; Biewald, A.; Leon Bodirsky, B.; Bondeau, A.; Boons-Prins, E.R.; Bouwman, A.F.; Leffelaar, P.A.; Roller, J.A.T.; Schaphoff, S.; Thonicke, K.
    Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe.We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities ( <0.4 livestock units per hectare-LSUha-1) but not in temperate regions even at much higher densities (0.4 to 1.2 LSUha-1). Applying LPJmL with the new grassland management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.
  • Item
    Give virtual water a chance! An attempt to rehabilitate the concept
    (München : Oekom - Gesellschaft fuer Oekologische Kommunikation mbH, 2011) Biewald, A.
    [No abstract available]
  • Item
    Global food demand scenarios for the 21st century
    (San Francisco, CA : Public Library of Science (PLoS), 2015) Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H.