Search Results

Now showing 1 - 2 of 2
  • Item
    Broadening of mode-locking pulses in quantum-dot semiconductor lasers : simulation, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Bimberg, Dieter
    We consider a mode-locked quantum-dot edge-emitting semiconductor laser consisting of a reverse biased saturable absorber and a forward biased amplifying section. To describe the dynamics of this laser we use the traveling wave model taking into account carrier exchange processes between a reservoir and the quantum dots. A comprehensive parameter study is presented and an analysis of mode-locking pulse broadening with an increase of injection current is performed. The results of our theoretical analysis are supported by experimental data demonstrating a strong pulse asymmetry in a monolithic two section quantum dot mode-locked laser
  • Item
    Impact of size, shape and composition on piezoelectric effects and the electronic properties of InGaAs/GaAs quantum dots
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Schliwa, Andrei; Winkelnkemper, Momme; Bimberg, Dieter
    The strain fields in and around self-organized In(Ga)As/GaAs quantum dots (QD) sensitively depend on QD geometry, average InGaAs composition and the In/Ga distribution profile. Piezoelectric fields of varying size are one result of these strain fields. We study systematically a large variety of realistic QD geometries and composition profiles, and calculate the linear and quadratic parts of the piezoelectric field. The balance of the two orders depends strongly on the QD shape and composition. For pyramidal InAs QDs with sharp interfaces a strong dominance of the second order fields is found. Upon annealing the first order terms become dominant, resulting in a reordering of the electron p- and d-states and a reorientation of the hole wavefunctions.