Search Results

Now showing 1 - 2 of 2
  • Item
    Suppression of particle formation by gas-phase pre-reactions in (100) MOVPE-grown β -Ga2O3films for vertical device application
    (Melville, NY : American Inst. of Physics, 2023) Chou, Ta-Shun; Seyidov, Palvan; Bin Anooz, Saud; Grüneberg, Raimund; Pietsch, Mike; Rehm, Jana; Tran, Thi Thuy Vi; Tetzner, Kornelius; Galazka, Zbigniew; Albrecht, Martin; Irmscher, Klaus; Fiedler, Andreas; Popp, Andreas
    This work investigated the metalorganic vapor-phase epitaxy (MOVPE) of (100) β-Ga2O3 films with the aim of meeting the requirements to act as drift layers for high-power electronic devices. A height-adjustable showerhead achieving a close distance to the susceptor (1.5 cm) was demonstrated to be a critical factor in increasing the stability of the Ga wetting layer (or Ga adlayer) on the surface and reducing parasitic particles. A film thickness of up to 3 μm has been achieved while keeping the root mean square below 0.7 nm. Record carrier mobilities of 155 cm2 V-1 s-1 (2.2 μm) and 163 cm2 V-1 s-1 (3 μm) at room temperature were measured for (100) β-Ga2O3 films with carrier concentrations of 5.7 × 1016 and 7.1 × 1016 cm-3, respectively. Analysis of temperature-dependent Hall mobility and carrier concentration data revealed a low background compensating acceptor concentration of 4 × 1015 cm-3.
  • Item
    Effect of post-metallization anneal on (100) Ga2O3/Ti–Au ohmic contact performance and interfacial degradation
    (Melville, NY : AIP Publ., 2022) Lee, Ming-Hsun; Chou, Ta-Shun; Bin Anooz, Saud; Galazka, Zbigniew; Popp, Andreas; Peterson, Rebecca L.
    Here, we investigate the effect of post-metallization anneal temperature on Ti/Au ohmic contact performance for (100)-oriented Ga2O3. A low contact resistance of ∼2.49 × 10−5 Ω·cm2 is achieved at an optimal anneal temperature of ∼420 °C for (100) Ga2O3. This is lower than the widely-used temperature of 470 °C for (010)-oriented Ga2O3. However, drastic degradation of the (100)-oriented contact resistance to ∼1.36 × 10−3 Ω·cm2 is observed when the anneal temperature was increased to 520 °C. Microscopy at the degraded ohmic contact revealed that the reacted Ti–TiOx interfacial layer has greatly expanded to 25–30 nm thickness and GaAu2 inclusions have formed between (310)-Ga2O3 planes and the Ti–TiOx layer. This degraded interface, which corresponds to the deterioration of ohmic contact properties, likely results from excess in-diffusion of Au and out-diffusion of Ga, concurrent with the expansion of the Ti–TiOx layer. These results demonstrate the critical influence of Ga2O3 anisotropy on the optimal post-metallization anneal temperature. Moreover, the observed Ti/Au contact degradation occurs for relatively moderate anneal conditions (520 °C for 1 min in N2), pointing to the urgent necessity of developing alternative metallization schemes for gallium oxide, including the use of Au-free electrodes