Search Results

Now showing 1 - 3 of 3
  • Item
    Analysis of nucleation events in the European boundary layer using the regional aerosol-climate model REMO-HAM with a solar radiation-driven OH-proxy
    (München : European Geopyhsical Union, 2014) Pietikäinen, J.-P.; Mikkonen, S.; Hamed, A.; Hienola, A.I.; Birmili, W.; Kulmala, M.; Laaksonen, A.
    This work describes improvements in the regional aerosol–climate model REMO-HAM in order to simulate more realistically the process of atmospheric new particle formation (NPF). A new scheme was implemented to simulate OH radical concentrations using a proxy approach based on observations and also accounting for the effects of clouds upon OH concentrations. Second, the nucleation rate calculation was modified to directly simulate the formation rates of 3 nm particles, which removes some unnecessary steps in the formation rate calculations used earlier in the model. Using the updated model version, NPF over Europe was simulated for the periods 2003–2004 and 2008–2009. The statistics of the simulated particle formation events were subsequently compared to observations from 13 ground-based measurement sites. The new model shows improved agreement with the observed NPF rates compared to former versions and can simulate the event statistics realistically for most parts of Europe.
  • Item
    Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations
    (München : European Geopyhsical Union, 2013) Asmi, A.; Collaud Coen, M.; Ogren, J.A.; Andrews, E.; Sheridan, P.; Jefferson, A.; Weingartner, E.; Baltensperger, U.; Bukowiecki, N.; Lihavainen, H.; Kivekäs, N.; Asmi, E.; Aalto, P.P.; Kulmala, M.; Wiedensohler, A.; Birmili, W.; Hamed, A.; O'Dowd, C.; Jennings, S.G.; Weller, R.; Flentje, H.; Fjaeraa, A.M.; Fiebig, M.; Myhre, C.L.; Hallar, A.G.; Swietlicki, E.; Kristensson, A.; Laj, P.
    We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.
  • Item
    Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation
    (München : European Geopyhsical Union, 2010) Spracklen, D.V.; Carslaw, K.S.; Merikanto, J.; Mann, G.W.; Reddington, C.L.; Pickering, S.; Ogren, J.A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S.G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R.M.; Talbot, R.; Sun, J.
    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT) and 1000–10 000 cm−3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.