Search Results

Now showing 1 - 2 of 2
  • Item
    Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations
    (München : European Geopyhsical Union, 2013) Asmi, A.; Collaud Coen, M.; Ogren, J.A.; Andrews, E.; Sheridan, P.; Jefferson, A.; Weingartner, E.; Baltensperger, U.; Bukowiecki, N.; Lihavainen, H.; Kivekäs, N.; Asmi, E.; Aalto, P.P.; Kulmala, M.; Wiedensohler, A.; Birmili, W.; Hamed, A.; O'Dowd, C.; Jennings, S.G.; Weller, R.; Flentje, H.; Fjaeraa, A.M.; Fiebig, M.; Myhre, C.L.; Hallar, A.G.; Swietlicki, E.; Kristensson, A.; Laj, P.
    We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.
  • Item
    South African EUCAARI measurements: Seasonal variation of trace gases and aerosol optical properties
    (München : European Geopyhsical Union, 2012) Laakso, L.; Vakkari, V.; Virkkula, A.; Laakso, H.; Backman, J.; Kulmala, M.; Beukes, J.P.; van Zyl, P.G.; Tiitta, P.; Josipovic, M.; Pienaar, J.J.; Chiloane, K.; Gilardoni, S.; Vignati, E.; Wiedensohler, A.; Tuch, T.; Birmili, W.; Piketh, S.; Collett, K.; Fourie, G.D.; Komppula, M.; Lihavainen, H.; de Leeuw, G.; Kerminen, V.-M.
    In this paper we introduce new in situ observations of atmospheric aerosols, especially chemical composition, physical and optical properties, on the eastern brink of the heavily polluted Highveld area in South Africa. During the observation period between 11 February 2009 and 31 January 2011, the mean particle number concentration (size range 10–840 nm) was 6310 cm3 and the estimated volume of sub-10 μm particles 9.3 μm3 m−3. The aerosol absorption and scattering coefficients at 637 nm were 8.3 Mm−1 and 49.5 Mm−1, respectively. The mean single-scattering albedo at 637 nm was 0.84 and the Ångström exponent of scattering was 1.5 over the wavelength range 450–635 nm. The mean O3, SO2, NOx and H2S-concentrations were 37.1, 11.5, 15.1 and 3.2 ppb, respectively. The observed range of concentrations was large and attributed to the seasonal variation of sources and regional meteorological effects, especially the anticyclonic re-circulation and strong winter-time inversions. In a global context, the levels of gases and particulates were typical for continental sites with strong anthropogenic influence, but clearly lower than the most polluted areas of south-eastern Asia. Of all pollutants observed at the site, ozone is the most likely to have adverse environmental effects, as the concentrations were high also during the growing season. The measurements presented here will help to close existing gaps in the ground-based global atmosphere observation system, since very little long-term data of this nature is available for southern Africa.