Search Results

Now showing 1 - 3 of 3
  • Item
    The contribution of sulphuric acid to atmospheric particle formation and growth: A comparison between boundary layers in Northern and Central Europe
    (München : European Geopyhsical Union, 2005) Fiedler, V.; Dal Maso, M.; Boy, M.; Aufmhoff, H.; Hoffmann, J.; Schuck, T.; Birmili, W.; Hanke, M.; Uecker, J.; Arnold, F.; Kulmala, M.
    Atmospheric gaseous sulphuric acid was measured and its influence on particle formation and growth was investigated building on aerosol data. The measurements were part of the EU-project QUEST and took place at two different measurement sites in Northern and Central Europe (Hyytiälä, Finland, March-April 2003 and Heidelberg, Germany, March-April 2004). From a comprehensive data set including sulphuric acid, particle number size distributions and meteorological data, particle growth rates, particle formation rates and source rates of condensable vapors were inferred. Growth rates were determined in two different ways, from particle size distributions as well as from a so-called timeshift analysis. Moreover, correlations between sulphuric acid and particle number concentration between 3 and 6 nm were examined and the influence of air masses of different origin was investigated. Measured maximum concentrations of sulphuric acid were in the range from 1x106 to 16x106cm-3. The gaseous sulphuric acid lifetime with respect to condensation on aerosol particles ranged from 2 to 33min in Hyytiälä and from 0.5 to 8 min in Heidelberg. Most calculated values (growth rates, formation rates, vapor source rates) were considerably higher in Central Europe (Heidelberg), due to the more polluted air and higher preexistent aerosol concentrations. Close correlations between H2SO4 and nucleation mode particles (size range: 3-6 nm) were found on most days at both sites. The percentage contribution of sulphuric acid to particle growth was below 10% at both places and to initial growth below 20%. An air mass analysis indicated that at Heidelberg new particles were formed predominantly in air advected from southwesterly directions.
  • Item
    Non-volatile residuals of newly formed atmospheric particles in the boreal forest
    (München : European Geopyhsical Union, 2007) Ehn, M.; Petäjä, T.; Birmili, W.; Junninen, H.; Aalto, P.; Kulmala, M.
    The volatility of sub-micrometer atmospheric aerosol particles was studied in a rural background environment in Finland using a combination of a heating tube and a scanning mobility particle sizer. The analysis focused on nanoparticles formed through nucleation which were subsequently observed during their growth in the diameter range between 5 and 60 nm. During the 6 days of new particle formation shown in detail, the concentrations of newly formed particles increased up to 10 000 cm−3. The number of nucleation mode particles measured after volatilization in the heating tube at 280°C was up to 90% of the total number under ambient conditions. Taking into account the absolute accuracy of the size distribution measurements, all ambient particles found in the rural atmosphere could have a non-volatile core after volatilization at 280°C. As the regional new particle formation events developed over time as a result of further vapor condensation, the newly formed particles grew at an average growth rate of 2.4±0.3 nm h−1. Importantly, the non-volatile cores of nucleation mode particles were also observed to grow over time, however, at a lower average growth rate of 0.6±0.3 nm h−1. One implication of the volatility analysis is that the newly formed particles, which have reached ambient diameters of 15 nm, are unlikely to consist of sulfuric acid, ammonium sulfate, and water alone. A relatively constant ratio between the growth rate of the ambient particles as well as their non-volatile cores indicates that non-volatile matter is formed only gradually in the growing particles. The non-volatile fraction of the particles showed some correlation with the ambient temperature. The composition and formation mechanism of this non-volatile material in nucleation mode particles are, to date, not known.
  • Item
    Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
    (München : European Geopyhsical Union, 2007) Riipinen, I.; Pringle, S.-L.; Kulmala, M.; Arnold, F.; Dal Maso, M.; Birmili, W.; Saarnio, K.; Teinilä, K.; Kerminen, V.-M.; Laaksonen, A.; Lehtinen, K.E.J.
    This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3–6) or formation rates at 1 nm and 3 nm (J1 and J3); 2) the time delays between [H2SO4] and N3–6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3–6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3–6 and [H2SO4]. The exponents in the J3∝[H2SO4 ]nJ3-connection were consistently higher than or equal to the exponents in the relation N3–6∝[H2SO4 ]nN36. In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for.