Search Results

Now showing 1 - 2 of 2
  • Item
    Tropospheric aerosol scattering and absorption over central Europe: A closure study for the dry particle state
    (München : European Geopyhsical Union, 2014) Ma, N.; Birmili, W.; Müller, T.; Tuch, T.; Cheng, Y.F.; Xu, W.Y.; Zhao, C.S.; Wiedensohler, A.
    This work analyses optical properties of the dry tropospheric aerosol measured at the regional Global Atmosphere Watch (GAW) observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, hemispheric backscattering coefficient, absorption coefficient, single scattering albedo, and scattering Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie model. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry-state optical properties show pronounced annual and diurnal variations, which are attributed to the corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixing layer height. Air mass classification shows that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the dry-state aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during daytime, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.
  • Item
    Mobility particle size spectrometers: Calibration procedures and measurement uncertainties
    (Philadelphia, Pa : Taylor & Francis, 2017) Wiedensohler, A.; Wiesner, A.; Weinhold, K.; Birmili, W.; Hermann, M.; Merkel, M.; Müller, T.; Pfeifer, S.; Schmidt, A.; Tuch, T.; Velarde, F.; Quincey, P.; Seeger, S.; Nowak, A.
    Mobility particle size spectrometers (MPSS) belong to the essential instruments in aerosol science that determine the particle number size distribution (PNSD) in the submicrometer size range. Following calibration procedures and target uncertainties against standards and reference instruments are suggested for a complete MPSS quality assurance program: (a) calibration of the CPC counting efficiency curve (within 5% for the plateau counting efficiency; within 1 nm for the 50% detection efficiency diameter), (b) sizing calibration of the MPSS, using a certified polystyrene latex (PSL) particle size standard at 203 nm (within 3%), (c) intercomparison of the PNSD of the MPSS (within 10% and 20% of the dN/dlogDP concentration for the particle size range 20–200 and 200–800 nm, respectively), and (d) intercomparison of the integral PNC of the MPSS (within 10%). Furthermore, following measurement uncertainties have been investigated: (a) PSL particle size standards in the range from 100 to 500 nm match within 1% after sizing calibration at 203 nm. (b) Bipolar diffusion chargers based on the radioactive nuclides Kr85, Am241, and Ni63 and a new ionizer based on corona discharge follow the recommended bipolar charge distribution, while soft X-ray-based charges may alter faster than expected. (c) The use of a positive high voltage supply show a 10% better performance than a negative one. (d) The intercomparison of the integral PNC of an MPSS against the total number concentration is still within the target uncertainty at an ambient pressure of approximately 500 hPa. Copyright © 2018 Published with license by American Association for Aerosol Research.