Search Results

Now showing 1 - 2 of 2
  • Item
    Tropospheric aerosol scattering and absorption over central Europe: A closure study for the dry particle state
    (München : European Geopyhsical Union, 2014) Ma, N.; Birmili, W.; Müller, T.; Tuch, T.; Cheng, Y.F.; Xu, W.Y.; Zhao, C.S.; Wiedensohler, A.
    This work analyses optical properties of the dry tropospheric aerosol measured at the regional Global Atmosphere Watch (GAW) observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, hemispheric backscattering coefficient, absorption coefficient, single scattering albedo, and scattering Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie model. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry-state optical properties show pronounced annual and diurnal variations, which are attributed to the corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixing layer height. Air mass classification shows that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the dry-state aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during daytime, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.
  • Item
    Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations
    (Amsterdam [u.a.] : Elsevier Science, 2018) Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; Gu, J.; Flentje, H.; Briel, B.; Asbac, C.; Kaminski, H.; Ries, L.; Sohme, R.; Gerwig, H.; Wirtz, K.; Meinhardt, F.; Schwerin, A.; Bath, O.; Ma, N.; Wiedensohler, A.
    This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors