Search Results

Now showing 1 - 5 of 5
  • Item
    Primary versus secondary contributions to particle number concentrations in the European boundary layer
    (München : European Geopyhsical Union, 2011) Reddington, C.L.; Carslaw, K.S.; Spracklen, D.V.; Frontoso, M.G.; Collins, L.; Merikanto, J.; Minikin, A.; Hamburger, T.; Coe, H.; Kulmala, M.; Aalto, P.; Flentje, H.; Plass-Dülmer, C.; Birmili, W.; Wiedensohler, A.; Wehner, B.; Tuch, T.; Sonntag, A.; O'Dowd, C.D.; Jennings, S.G.; Dupuy, R.; Baltensperger, U.; Weingartner, E.; Hansson, H.-C.; Tunved, P.; Laj, P.; Sellegri, K.; Boulon, J.; Putaud, J.-P.; Gruening, C.; Swietlicki, E.; Roldin, P.; Henzing, J.S.; Moerman, M.; Mihalopoulos, N.; Kouvarakis, G.; Ždímal, V.; Zíková, N.; Marinoni, A.; Bonasoni, P.; Duchi, R.
    It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.
  • Item
    Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe
    (München : European Geopyhsical Union, 2014) Nordmann, S.; Cheng, Y.F.; Carmichael, G.R.; Yu, M.; van der Gon, H.A.C.Denier; Zhang, Q.; Saide, P.E.; Pöschl, U.; Su, H.; Birmili, W.; Wiedensohler, A.
    Particles containing black carbon (BC), a strong absorbing substance, exert a rather uncertain direct and indirect radiative forcing in the atmosphere. To investigate the mass concentration and absorption properties of BC particles over central Europe, the model WRF-Chem was used at a resolution of 12 km in conjunction with a high-resolution BC emission inventory (EUCAARI 42-Pan-European Carbonaceous Aerosol Inventory; 1/8° × 1/16°). The model simulation was evaluated using measurements of equivalent soot carbon, absorption coefficients and particle number concentrations at seven sites within the German Ultrafine Aerosol Network, PM mass concentrations from the dense measurement network of the German Federal Environmental Agency at 392 monitoring stations, and aerosol optical depth from MODIS and AERONET. A distinct time period (25 March to 10 April 2009) was chosen, during which the clean marine air mass prevailed in the first week and afterwards the polluted continental air mass mainly from the southeast dominated with elevated daily average BC concentration of up to 4 μ g m−3. The simulated PM mass concentration, aerosol number concentration and optical depth were in good agreement with the observations, while the modelled BC mass concentrations were found to be a factor of 2 lower than the observations. Together with back trajectories, detailed model bias analyses suggested that the current BC emission in countries to the east and south of Germany might be underestimated by a factor of 5, at least for the simulation period. Running the model with upscaled BC emissions in these regions led to a smaller model bias and a better correlation between model and measurement. In contrast, the particle absorption coefficient was positively biased by about 20% even when the BC mass concentration was underestimated by around 50%. This indicates that the internal mixture treatment of BC in the WRF-Chem optical calculation is unrealistic in our case, which overamplifies the light absorption by BC-containing particles. By adjusting the modelled mass absorption cross-section towards the measured values, the simulation of particle light absorption of BC was improved as well. Finally, the positive direct radiative forcing of BC particles at the top of the atmosphere was estimated to be in the range of 0 to +4 W m−2 over Germany for the model run with improved BC mass concentration and adjusted BC light absorption cross-section. This adjustment lowered the positive forcing of BC by up to 70%, compared with the internal mixing treatment of BC in the model simulation.
  • Item
    Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions
    (München : European Geopyhsical Union, 2011) Stock, M.; Cheng, Y.F.; Birmili, W.; Massling, A.; Wehner, B.; Müller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A.
    This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH). During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS). Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp): 1.42 (± 0.05) at 30 nm compared to 1.63 (± 0.07) at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea) as well as the degree of continental pollution (marine vs. continentally influenced). The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70–80 %, up to 50–70 % of the calculated visibility reduction was due to the hygroscopic growth of the particles by water compared to the effect of the dry particles alone. The estimated aerosol direct radiative forcings for both, marine and continentally influenced air masses were negative indicating a net cooling of the atmosphere due to the aerosol. The radiative forcing ΔFr was nevertheless governed by the total aerosol concentration most of the time: ΔFr was typically more negative for continentally influenced aerosols (ca. −4 W m−2) compared to rather clean marine aerosols (ca. −1.5 W m−2). When RH occasionally reached 90 % in marine air masses, ΔFr even reached values down to −7 W m−2. Our results emphasize, on the basis of explicit particle hygroscopicity measurements, the relevance of ambient RH for the radiative forcing of regional atmospheres.
  • Item
    Tropospheric aerosol scattering and absorption over central Europe: A closure study for the dry particle state
    (München : European Geopyhsical Union, 2014) Ma, N.; Birmili, W.; Müller, T.; Tuch, T.; Cheng, Y.F.; Xu, W.Y.; Zhao, C.S.; Wiedensohler, A.
    This work analyses optical properties of the dry tropospheric aerosol measured at the regional Global Atmosphere Watch (GAW) observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, hemispheric backscattering coefficient, absorption coefficient, single scattering albedo, and scattering Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie model. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry-state optical properties show pronounced annual and diurnal variations, which are attributed to the corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixing layer height. Air mass classification shows that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the dry-state aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during daytime, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.
  • Item
    Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz
    (München : European Geopyhsical Union, 2011) Poulain, L.; Spindler, G.; Birmili, W.; Plass-Dülmer, C.; Weinhold, K.; Wiedensohler, A.; Herrmann, H.
    Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid), some Polycyclic Aromatic Hydrocarbon (PAHs) or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany) using an Aerodyne Aerosol Mass Spectrometer (AMS). Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59%) while in winter, the nitrate fraction was more prevalent (34.4%). The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3− = 3.6 μg m−3) than in summer (ΔNO3− = 0.7 μg m−3). The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC) ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc) from −0.66 to −0.4), which could be correlated to hydroxyl radical (OH) and ozone concentrations, indicating a photochemical transformation process. In summer, the organic particulate matter seemed to be heavily influenced by regional secondary formation and transformation processes, facilitated by photochemical production processes as well as a diurnal cycling of the substances between the gas and particulate phase. In winter, these processes were obviously less pronounced (OM/OC ranging from 1.60 to 1.67 and OSc from −0.8 to −0.7), so that organic matter apparently originated mainly from aged particles and long range transport.