Search Results

Now showing 1 - 3 of 3
  • Item
    Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany
    (München : European Geopyhsical Union, 2011) Poulain, L.; Iinuma, Y.; Müller, K.; Birmili, W.; Weinhold, K.; Brüggemann, E.; Gnauk, T.; Hausmann, A.; Löschau, G.; Wiedensohler, A.; Herrmann, H.
    Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany). During this campaign, an Aerosol Mass Spectrometer (AMS) was deployed in parallel to a PM1 high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF) to obtain detailed information about the organic aerosol (OA). Biomass-burning organic aerosol (BBOA), Hydrocarbon-like organic aerosol (HOA), and Oxygenated Organic Aerosol (OOA) were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH) were measured by the AMS with an average concentration of 10 ng m−3 and short term events of extremely high PAH concentration (up to 500 ng m−3) compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM1 filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend) on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and around 62% of the total PAH concentration measured at Seiffen. This result highlights the important contribution of residential wood combustion to air quality and PAH emissions at the sampling place, which might have a significant impact on human health. Moreover, it also emphasizes the need for a better time resolution of the chemical characterization of toxic particulate compounds in order to provide more information on variations of the different sources through the days as well as to better estimate the real human exposure.
  • Item
    Analysis of exceedances in the daily PM10 mass concentration (50 μg m−3) at a roadside station in Leipzig, Germany
    (München : European Geopyhsical Union, 2012) Engler, C.; Birmili, W.; Spindler, G.; Wiedensohler, A.
    Five years of PM10 and PM2.5 ambient air measurements at a roadside, an urban, and a regional background site in Leipzig (Germany) were analyzed for violations of the legal PM10 limit value (EC, 1999). The annual mean PM10 concentrations at the three sites were well below the legal threshold of 40 μg m−3 (32.6, 22.0 and 21.7 μg m−3, respectively). At roadside, the daily maximum value of 50 μg m−3 was exceeded on 232 days (13% of all days) in 2005–2009, which led to a violation of the EC directive in three out of five years. We analysed the meteorological factors and local source contributions that eventually led to the exceedances of the daily limit value. As noted in other urban environments before, most exceedance days were observed in the cold season. Exceedance days were most probable under synoptic situations characterised by stagnant winds, low temperatures and strong temperature inversions in winter time. However, these extreme situations accounted for only less than half of the exeedance days. We also noticed a significant number of exceedance days that occurred in the cold season under south-westerly winds, and in the warm season in the presence of easterly winds. Our analysis suggests that local as well as regional sources of PM are equally responsible for exceedances days at the roadside site. The conclusion is that a combined effort of local, national and international reduction measures appears most likely to avoid systematic exceedances of the daily limit value in the future.
  • Item
    Ion-particle interactions during particle formation and growth at a coniferous forest site in central Europe
    (München : European Geopyhsical Union, 2014) Gonser, S.G.; Klein, F.; Birmili, W.; Größ, J.; Kulmala, M.; Manninen, H.E.; Wiedensohler, A.; Held, A.
    In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.