Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

2010, Spracklen, D.V., Carslaw, K.S., Merikanto, J., Mann, G.W., Reddington, C.L., Pickering, S., Ogren, J.A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S.G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R.M., Talbot, R., Sun, J.

We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT) and 1000–10 000 cm−3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.

Loading...
Thumbnail Image
Item

Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign

2011, Hamburger, T., McMeeking, G., Minikin, A., Birmili, W., Dall'Osto, M., O'Dowd, C., Flentje, H., Henzing, B., Junninen, H., Kristensson, A., de Leeuw, G., Stohl, A., Burkhart, J.F., Coe, H., Krejci, R., Petzold, A.

In May 2008 the EUCAARI-LONGREX aircraft field campaign was conducted within the EUCAARI intensive observational period. The campaign aimed at studying the distribution and evolution of air mass properties on a continental scale. Airborne aerosol and trace gas measurements were performed aboard the German DLR Falcon 20 and the British FAAM BAe-146 aircraft. This paper outlines the meteorological situation over Europe during May 2008 and the temporal and spatial evolution of predominantly anthropogenic particulate pollution inside the boundary layer and the free troposphere. Time series data of six selected ground stations are used to discuss continuous measurements besides the single flights. The observations encompass total and accumulation mode particle number concentration (0.1–0.8 μm) and black carbon mass concentration as well as several meteorological parameters. Vertical profiles of total aerosol number concentration up to 10 km are compared to vertical profiles probed during previous studies. During the first half of May 2008 an anticyclonic blocking event dominated the weather over Central Europe. It led to increased pollutant concentrations within the centre of the high pressure inside the boundary layer. Due to long-range transport the accumulated pollution was partly advected towards Western and Northern Europe. The measured aerosol number concentrations over Central Europe showed in the boundary layer high values up to 14 000 cm−3 for particles in diameter larger 10 nm and 2300 cm−3 for accumulation mode particles during the high pressure period, whereas the middle free troposphere showed rather low concentrations of particulates. Thus a strong negative gradient of aerosol concentrations between the well mixed boundary layer and the clean middle troposphere occurred.