Search Results

Now showing 1 - 4 of 4
  • Item
    First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain
    (München : European Geopyhsical Union, 2011) Shen, X.J.; Sun, J.Y.; Zhang, Y.M.; Wehner, B.; Nowak, A.; Tuch, T.; Zhang, X.C.; Wang, T.T.; Zhou, H.G.; Zhang, X.L.; Dong, F.; Birmili, W.; Wiedensohler, A.
    Atmospheric particle number size distributions (size range 0.003–10 μm) were measured between March 2008 and August 2009 at Shangdianzi (SDZ), a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia) favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN) within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass concentration and extinction coefficient, indicative of a high abundance of condensable vapors in the atmosphere under study.
  • Item
    Analysis of number size distributions of tropical free tropospheric aerosol particles observed at Pico Espejo (4765 m a.s.l.), Venezuela
    (München : European Geopyhsical Union, 2011) Schmeissner, T.; Krejci, R.; Ström, J.; Birmili, W.; Wiedensohler, A.; Hochschild, G.; Gross, J.; Hoffmann, P.; Calderon, S.
    The first long-term measurements of aerosol number and size distributions in South-American tropical free troposphere (FT) were performed from March 2007 until March 2009. The measurements took place at the high altitude Atmospheric Research Station Alexander von Humboldt. The station is located on top of the Sierra Nevada mountain ridge at 4765 m a.s.l. nearby the city of Mérida, Venezuela. Aerosol size distribution and number concentration data was obtained with a custom-built Differential Mobility Particle Sizer (DMPS) system and a Condensational Particle Counter (CPC). The analysis of the annual and diurnal variability of the tropical FT aerosol focused mainly on possible links to the atmospheric general circulation in the tropics. Considerable annual and diurnal cycles of the particle number concentration were observed. Highest total particle number concentrations were measured during the dry season (January–March, 519 ± 613 cm−3), lowest during the wet season (July–September, 318 ± 194 cm−3). The more humid FT (relative humidity (RH) range 50–95 %) contained generally higher aerosol particle number concentrations (573 ± 768 cm−3 during dry season, 320 ± 195 cm−3 during wet season) than the dry FT (RH < 50 %, 454 ± 332 cm−3 during dry season, 275 ± 172 cm−3 during wet season), indicating the importance of convection for aerosol distributions in the tropical FT. The diurnal cycle in the variability of the particle number concentration was mainly driven by local orography.
  • Item
    Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga
    (München : European Geopyhsical Union, 2013) Chi, X.; Winderlich, J.; Mayer, J.-C.; Panov, A.V.; Heimann, M.; Birmili, W.; Heintzenberg, J.; Cheng, Y.; Andreae, M.O.
    Siberia is one of few continental regions in the Northern Hemisphere where the atmosphere may sometimes approach pristine background conditions. We present the time series of aerosol and carbon monoxide (CO) measurements between September 2006 and December 2011 at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E). We investigate the seasonal, weekly and diurnal variations of aerosol properties (including absorption and scattering coefficients and derived parameters, such as equivalent black carbon (BCe), Ångström exponent, single scattering albedo, and backscattering ratio) and the CO mixing ratios. Criteria were established to distinguish polluted from near-pristine air masses, providing quantitative characteristics for each type. Depending on the season, 23–36% of the sampling time at ZOTTO was found to be representative of a clean atmosphere. The summer pristine data indicate that primary biogenic and secondary organic aerosol formation are quite strong particle sources in the Siberian taiga. The summer seasons 2007–2008 were dominated by an Aitken mode around 80 nm size, whereas the summer 2009 with prevailing easterly winds produced particles in the accumulation mode around 200 nm size. We found these differences to be mainly related to air temperature, through its effect on the production rates of biogenic volatile organic compounds (VOC) precursor gases. In winter, the particle size distribution peaked at 160 nm, and the footprint of clean background air was characteristic for aged particles from anthropogenic sources at great distances from ZOTTO and diluted biofuel burning emissions from domestic heating. The wintertime polluted air originates mainly from large cities south and southwest of the site; these particles have a dominant mode around 100 nm, and the ΔBCe / ΔCO ratio of 7–11 ng m−3 ppb−1 suggests dominant contributions from coal and biofuel burning for heating. During summer, anthropogenic emissions are the dominant contributor to the pollution particles at ZOTTO, while only 12% of the polluted events are classified as biomass-burning-dominated, but then often associated with extremely high CO concentrations and aerosol absorption coefficients. Two biomass-burning case studies revealed different ΔBCe / ΔCO ratios from different fire types, with the agricultural fires in April~2008 yielding a very high ratio of 21 ng m−3 ppb−1. Overall, we find that anthropogenic sources dominate the aerosol population at ZOTTO most of the time, even during nominally clean episodes in winter, and that near-pristine conditions are encountered only in the growing season and then only episodically.
  • Item
    Tropospheric aerosol scattering and absorption over central Europe: A closure study for the dry particle state
    (München : European Geopyhsical Union, 2014) Ma, N.; Birmili, W.; Müller, T.; Tuch, T.; Cheng, Y.F.; Xu, W.Y.; Zhao, C.S.; Wiedensohler, A.
    This work analyses optical properties of the dry tropospheric aerosol measured at the regional Global Atmosphere Watch (GAW) observation site Melpitz in East Germany. For a continuous observation period between 2007 and 2010, we provide representative values of the dry-state scattering coefficient, hemispheric backscattering coefficient, absorption coefficient, single scattering albedo, and scattering Ångström exponent. Besides the direct measurement, the aerosol scattering coefficient was alternatively computed from experimental particle number size distributions using a Mie model. Within pre-defined limits, a closure could be achieved with the direct measurement. The achievement of closure implies that such calculations can be used as a high-level quality control measure for data sets involving multiple instrumentation. All dry-state optical properties show pronounced annual and diurnal variations, which are attributed to the corresponding variations in the regional emission fluxes, the intensity of secondary particle formation, and the mixing layer height. Air mass classification shows that atmospheric stability is a major factor influencing the dry aerosol properties at the GAW station. In the cold season, temperature inversions limit the volume available for atmospheric mixing, so that the dry-state aerosol optical properties near the ground proved quite sensitive to the geographical origin of the air mass. In the warm season, when the atmosphere is usually well-mixed during daytime, considerably less variability was observed for the optical properties between different air masses. This work provides, on the basis of quality-checked in situ measurements, a first step towards a climatological assessment of direct aerosol radiative forcing in the region under study.