Search Results

Now showing 1 - 3 of 3
  • Item
    Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010
    (München : European Geopyhsical Union, 2014) Henning, S.; Dieckmann, K.; Ignatius, K.; Schäfer, M.; Zedler, P.; Harris, E.; Sinha, B.; van Pinxteren, D.; Mertes, S.; Birmili, W.; Merkel, M.; Wu, Z.; Wiedensohler, A.; Wex, H.; Herrmann, H.; Stratmann, F.
    Within the framework of the "Hill Cap Cloud Thuringia 2010" (HCCT-2010) international cloud experiment, the influence of cloud processing on the activation properties of ambient aerosol particles was investigated. Particles were probed upwind and downwind of an orographic cap cloud on Mt Schmücke, which is part of a large mountain ridge in Thuringia, Germany. The activation properties of the particles were investigated by means of size-segregated cloud condensation nuclei (CCN) measurements at 3 to 4 different supersaturations. The observed CCN spectra together with the total particle spectra were used to calculate the hygroscopicity parameter κ for the upwind and downwind stations. The upwind and downwind critical diameters and κ values were then compared for defined cloud events (FCE) and non-cloud events (NCE). Cloud processing was found to increase the hygroscopicity of the aerosol particles significantly, with an average increase in κ of 50%. Mass spectrometry analysis and isotopic analysis of the particles suggest that the observed increase in the hygroscopicity of the cloud-processed particles is due to an enrichment of sulfate and possibly also nitrate in the particle phase.
  • Item
    Primary versus secondary contributions to particle number concentrations in the European boundary layer
    (München : European Geopyhsical Union, 2011) Reddington, C.L.; Carslaw, K.S.; Spracklen, D.V.; Frontoso, M.G.; Collins, L.; Merikanto, J.; Minikin, A.; Hamburger, T.; Coe, H.; Kulmala, M.; Aalto, P.; Flentje, H.; Plass-Dülmer, C.; Birmili, W.; Wiedensohler, A.; Wehner, B.; Tuch, T.; Sonntag, A.; O'Dowd, C.D.; Jennings, S.G.; Dupuy, R.; Baltensperger, U.; Weingartner, E.; Hansson, H.-C.; Tunved, P.; Laj, P.; Sellegri, K.; Boulon, J.; Putaud, J.-P.; Gruening, C.; Swietlicki, E.; Roldin, P.; Henzing, J.S.; Moerman, M.; Mihalopoulos, N.; Kouvarakis, G.; Ždímal, V.; Zíková, N.; Marinoni, A.; Bonasoni, P.; Duchi, R.
    It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.
  • Item
    Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements
    (München : European Geopyhsical Union, 2015) Wu, Z.J.; Poulain, L.; Birmili, W.; Größ, J.; Niedermeier, N.; Wang, Z.B.; Herrmann, H.; Wiedensohler, A.
    New particle formation (NPF) and growth is an important source of cloud condensation nuclei (CCN). In this study, we investigated the chemical species driving new particle growth to the CCN sizes on the basis of particle hygroscopicity measurements carried out at the research station Melpitz, Germany. Three consecutive NPF events occurred during summertime were chosen as examples to perform the study. Hygroscopicity measurements showed that the (NH4)2SO4-equivalent water-soluble fraction accounts for 20 and 16 % of 50 and 75 nm particles, respectively, during the NPF events. Numerical analysis showed that the ratios of H2SO4 condensational growth to the observed particle growth were 20 and 13 % for 50 and 75 nm newly formed particles, respectively. Aerosol mass spectrometer measurements showed that an enhanced mass fraction of sulfate and ammonium in the newly formed particles was observed when new particles grew to the sizes larger than 30 nm shortly after the particle formation period. At a later time, the secondary organic species played a key role in the particle growth. Both hygroscopicity and aerosol mass spectrometer (AMS) measurements and numerical analysis confirmed that organic compounds were major contributors driving particle growth to CCN sizes. The critical diameters at different supersaturations estimated using AMS data and κ-Köhler theory increased significantly during the later course of NPF events. This indicated that the enhanced organic mass fraction caused a reduction in CCN efficiency of newly formed particles. Our results implied that the CCN production associated with atmospheric nucleation may be overestimated if assuming that newly formed particles can serve as CCN once they grow to a fixed particle size, an assumption made in some previous studies, especially for organic-rich environments. In our study, the enhancement in CCN number concentration associated with individual NPF events were 63, 66, and 69 % for 0.1, 0.4, and 0.6 % supersaturation, respectively.