Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe

2021, Sun, Jia, Hermann, Markus, Yuan, Ye, Birmili, Wolfram, Collaud Coen, Martine, Weinhold, Kay, Madueño, Leizel, Poulain, Laurent, Tuch, Thomas, Ries, Ludwig, Sohmer, Ralf, Couret, Cedric, Frank, Gabriele, Brem, Benjamin Tobias, Gysel-Beer, Martin, Ma, Nan, Wiedensohler, Alfred

Background: The implementation of emission mitigation policies in Europe over the last two decades has generally improved the air quality, which resulted in lower aerosol particle mass, particle number, and black carbon mass concentration. However, little is known whether the decreasing particle concentrations at a lower-altitude level can be observed in the free troposphere (FT), an important layer of the atmosphere, where aerosol particles have a longer lifetime and may affect climate dynamics. In this study, we used data from two high-Alpine observatories, Zugspitze-Schneefernerhaus (ZSF) and Jungfraujoch (JFJ), to assess the long-term trends on size-resolved particle number concentrations (PNCs) and equivalent black carbon (eBC) mass concentration separated for undisturbed lower FT conditions and under the influence of air from the planetary boundary layer (PBL) from 2009 to 2018. Results: The FT and PBL-influenced conditions were segregated for both sites. We found that the FT conditions in cold months were more prevalent than in warm months, while the measured aerosol parameters showed different seasonal patterns for the FT and PBL-influenced conditions. The pollutants in the PBL-influenced condition have a higher chance to be transported to high-altitudes due to the mountainous topography, leading to a higher concentration and more distinct seasonal variation, and vice versa. The long-term trends of the measured aerosol parameters were evaluated and the decreased aerosol concentrations were observed for both FT and PBL-influenced conditions. The observed decreasing trends in eBC concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. The decreased concentrations in the FT condition suggest that the background aerosol concentration in the lower FT over Central Europe has correspondingly decreased. The change of back trajectories in the FT condition at ZSF and JFJ was further evaluated to investigate the other possible drivers for the decreasing trends. Conclusions: The background aerosol concentration in the lower FT over Central Europe has significantly decreased during 2009–2018. The implementation of emission mitigation policies is the most decisive factor and the decrease of the regional airmass occurrence over Central Europe also has contributed to the decreasing trends. © 2021, The Author(s).

Loading...
Thumbnail Image
Item

Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018

2020, Sun, Jia, Birmili, Wolfram, Hermann, Markus, Tuch, Thomas, Weinhold, Kay, Merkel, Maik, Rasch, Fabian, Müller, Thomas, Schladitz, Alexander, Bastian, Susanne, Löschau, Gunter, Cyrys, Josef, Gu, Jianwei, Flentje, Harald, Briel, Björn, Asbach, Christoph, Kaminski, Heinz, Ries, Ludwig, Sohmer, Ralf, Gerwig, Holger, Wirtz, Klaus, Meinhardt, Frank, Schwerin, Andreas, Bath, Olaf, Ma, Nan, Wiedensohler, Alfred

Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009-2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between-13.1% and-1.7% per year. The slopes of the PNCs vary from-17.2% to-1.7 %,-7.8% to-1.1 %, and-11.1% to-1.2% per year for 10-30, 30-200, and 200-800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies. © 2020 Author(s).