Search Results

Now showing 1 - 2 of 2
  • Item
    Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors
    ([London] : Nature Publishing Group UK, 2021) Kublitski, Jonas; Fischer, Axel; Xing, Shen; Baisinger, Lukasz; Bittrich, Eva; Spoltore, Donato; Benduhn, Johannes; Vandewal, Koen; Leo, Karl
    Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.
  • Item
    Synthesis and characterization of poly(1,2,3-triazole)s with inherent high sulfur content for optical applications
    (Hoboken, NJ : Wiley, 2023) Mazumder, Kajari; Komber, Hartmut; Bittrich, Eva; Voit, Brigitte; Banerjee, Susanta
    The synthesis of solution-processable sulfur-containing polytriazoles for optoelectronic applications is a relatively less explored domain in polymer research. The synthesis of novel bifunctional (DA) and trifunctional (TA) azido-monomers with inherent high sulfur content and of organo-soluble high refractive index poly(1,2,3-triazole)s using the azido-monomers via Cu(I) assisted click polymerization reactions are reported in this work. The azido-monomers were synthesized by the conversion of previously reported amine-functionalized compounds to azides using azidotrimethylsilane in a polar aprotic solvent. Dialkyne monomers were also synthesized and reacted with the azides to prepare a series of five linear and two hyperbranched poly(1,2,3-triazole)s. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermogravimetric analysis were used to characterize the synthesized polymers. It was also demonstrated that the use of the trifunctional azide in optimized conditions resulted in increased solubility of an otherwise insoluble linear poly(1,2,3-triazole). The optical characterization of the polymers was carried out on thin polymer films with thickness in the nanometer range, which were successfully prepared by spin-coating on silicon wafers. It was found that the increase in the sulfur and aromatic content in the polymer backbone successfully increased the refractive index of the polymers up to 1.743 at 589 nm.