Search Results

Now showing 1 - 3 of 3
  • Item
    Relating phase field and sharp interface approaches to structural topology optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Blank, Luise; Farshbaf-Shaker, M. Hassan; Garcke, Harald; Styles, Vanessa
    A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for mean compliance problems and a cost involving the least square error to a target displacement.
  • Item
    Multi-material phase field approach to structural topology optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Blank, Luise; Farshbaf-Shaker, M. Hassan; Garcke, Harald; Rupprecht, Christoph; Styles, Vanessa
    Multi-material structural topology and shape optimization problems are formulated within a phase field approach. First-order conditions are stated and the relation of the necessary conditions to classical shape derivatives are discussed. An efficient numerical method based on an H1-gradient projection method is introduced and finally several numerical results demonstrate the applicability of the approach.
  • Item
    Optimal control of Allen-Cahn systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Blank, Luise; Farshbaf-Shaker, M. Hassan; Hecht, Claudia; Michl, Josef; Rupprecht, Christoph
    Optimization problems governed by Allen-Cahn systems including elastic effects are formulated and first-order necessary optimality conditions are presented. Smooth as well as obstacle potentials are considered, where the latter leads to an MPEC. Numerically, for smooth potential the problem is solved efficiently by the Trust-Region-Newton-Steihaug-cg method. In case of an obstacle potential first numerical results are presented.