Search Results

Now showing 1 - 3 of 3
  • Item
    Influence of slip on the Rayleigh-Plateau rim instability in dewetting viscous films
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Bäumchen, Oliver; Marquant, Ludovic; Blossey, Ralf; Münch, Andreas; Wagner, Barbara; Jacobs, Karin
    A dewetting viscous film develops a characteristic fluid rim at its receding edge due to mass conservation. In the course of the dewetting process the rim becomes unstable via an instability of Rayleigh-Plateau type. An important difference exists between this classic instability of a liquid column and the rim instability in the thin film as the growth of the rim is continuously fueled by the receding film. We explain how the development and macroscopic morphology of the rim instability are controlled by the slip of the film on the substrate. A single thin-film model captures quantitatively the characteristics of the evolution of the rim observed in our experiments.
  • Item
    Spinodal dewetting of thin films with large interfacial slip : implications from the dispersion relation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Rauscher, Markus; Blossey, Ralf; Münch, Andreas; Wagner, Barbara
    We compare the dispersion relations for spinodally dewetting thin liquid films for increasing magnitude of interfacial slip length in the lubrication limit. While the shape of the dispersion relation, in particular the position of the maximum, are equal for no-slip up to moderate slip lengths, the position of the maximum shifts to much larger wavelengths for large slip lengths. Here, we discuss the implications of this fact for recently developed methods to assess the disjoining pressure in spinodally unstable thin films by measuring the shape of the roughness power spectrum. For PS films on OTS covered Si wafers (with slip length $bapprox 1,mu$m) we predict a 20% shift of the position of the maximum of the power spectrum which should be detectable in experiments.
  • Item
    Slip vs. viscoelasticity in dewetting thin films
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Blossey, Ralf; Münch, Andreas; Rauscher, Markus; Wagner, Barbara
    Ultrathin polymer films on non-wettable substrates display dynamic features which have been attributed to either viscoelastic or slip effects. Here we show that in the weak and strong slip regime effects of viscoelastic relaxation are either absent or essentially indistinguishable from slip effects. Strong-slip modifies the fastest unstable mode in a rupturing thin film, which questions the standard approach to reconstruct the effective interface potential from dewetting experiments.