Search Results

Now showing 1 - 3 of 3
  • Item
    Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy
    (Berlin ; Heidelberg : Springer, 2020) Pahlow S.; Orasch T.; Žukovskaja O.; Bocklitz T.; Haas H.; Weber K.
    Triacetylfusarinine C (TAFC) is a siderophore produced by certain fungal species and might serve as a highly useful biomarker for the fast diagnosis of invasive aspergillosis. Due to its renal elimination, the biomarker is found in urine samples of patients suffering from Aspergillus infections. Accordingly, non-invasive diagnosis from this easily obtainable body fluid is possible. Within our contribution, we demonstrate how Raman microspectroscopy enables a sensitive and specific detection of TAFC. We characterized the TAFC iron complex and its iron-free form using conventional and interference-enhanced Raman spectroscopy (IERS) and compared the spectra with the related compound ferrioxamine B, which is produced by bacterial species. Even though IERS only offers a moderate enhancement of the Raman signal, the employment of respective substrates allowed lowering the detection limit to reach the clinically relevant range. The achieved limit of detection using IERS was 0.5 ng of TAFC, which is already well within the clinically relevant range. By using an extraction protocol, we were able to detect 1.4 μg/mL TAFC via IERS from urine within less than 3 h including sample preparation and data analysis. We could further show that TAFC and ferrioxamine B can be clearly distinguished by means of their Raman spectra even in very low concentrations. © 2020, The Author(s).
  • Item
    Discrimination between pathogenic and non-pathogenic E. coli strains by means of Raman microspectroscopy
    (Berlin ; Heidelberg : Springer, 2020) Lorenz B.; Ali N.; Bocklitz T.; Rösch P.; Popp J.
    Bacteria can be harmless commensals, beneficial probiotics, or harmful pathogens. Therefore, mankind is challenged to detect and identify bacteria in order to prevent or treat bacterial infections. Examples are identification of species for treatment of infection in clinics and E. coli cell counting for water quality monitoring. Finally, in some instances, the pathogenicity of a species is of interest. The main strategies to investigate pathogenicity are detection of target genes which encode virulence factors. Another strategy could be based on phenotypic identification. Raman spectroscopy is a promising phenotypic method, which offers high sensitivities and specificities for the identification of bacteria species. In this study, we evaluated whether Raman microspectroscopy could be used to determine the pathogenicity of E. coli strains. We used Raman spectra of seven non-pathogenic and seven pathogenic E. coli strains to train a PCA-SVM model. Then, the obtained model was tested by identifying the pathogenicity of three additional E. coli strains. The pathogenicity of these three strains could be correctly identified with a mean sensitivity of 77%, which is suitable for a fast screening of pathogenicity of single bacterial cells. [Figure not available: see fulltext.]. © 2020, The Author(s).
  • Item
    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study
    (Columbus, Ohio : American Chemical Society, 2020) Guo S.; Beleites C.; Neugebauer U.; Abalde-Cela S.; Afseth N.K.; Alsamad F.; Anand S.; Araujo-Andrade C.; Aškrabić S.; Avci E.; Baia M.; Baranska M.; Baria E.; Batista De Carvalho L.A.E.; De Bettignies P.; Bonifacio A.; Bonnier F.; Brauchle E.M.; Byrne H.J.; Chourpa I.; Cicchi R.; Cuisinier F.; Culha M.; Dahms M.; David C.; Duponchel L.; Duraipandian S.; El-Mashtoly S.F.; Ellis D.I.; Eppe G.; Falgayrac G.; Gamulin O.; Gardner B.; Gardner P.; Gerwert K.; Giamarellos-Bourboulis E.J.; Gizurarson S.; Gnyba M.; Goodacre R.; Grysan P.; Guntinas-Lichius O.; Helgadottir H.; Grošev V.M.; Kendall C.; Kiselev R.; Kölbach M.; Krafft C.; Krishnamoorthy S.; Kubryck P.; Lendl B.; Loza-Alvarez P.; Lyng F.M.; Machill S.; Malherbe C.; Marro M.; Marques M.P.M.; Matuszyk E.; Morasso C.F.; Moreau M.; Muhamadali H.; Mussi V.; Notingher I.; Pacia M.Z.; Pavone F.S.; Penel G.; Petersen D.; Piot O.; Rau J.V.; Richter M.; Rybarczyk M.K.; Salehi H.; Schenke-Layland K.; Schlücker S.; Schosserer M.; Schütze K.; Sergo V.; Sinjab F.; Smulko J.; Sockalingum G.D.; Stiebing C.; Stone N.; Untereiner V.; Vanna R.; Wieland K.; Popp J.; Bocklitz T.
    The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies. © 2020 American Chemical Society.