Search Results

Now showing 1 - 2 of 2
  • Item
    Multimodal imaging techniques to evaluate the anticancer effect of cold atmospheric pressure plasma
    (Basel : MDPI, 2021) Kordt, Marcel; Trautmann, Isabell; Schlie, Christin; Lindner, Tobias; Stenzel, Jan; Schildt, Anna; Boeckmann, Lars; Bekeschus, Sander; Kurth, Jens; Krause, Bernd J.; Vollmar, Brigitte; Grambow, Eberhard
    Background: Skin cancer is the most frequent cancer worldwide and is divided into non-melanoma skin cancer, including basal cell carcinoma, as well as squamous cell carcinoma (SCC) and malignant melanoma (MM). Methods: This study evaluates the effects of cold atmospheric pressure plasma (CAP) on SCC and MM in vivo, employing a comprehensive approach using multi-modal imaging techniques. Longitudinal MR and PET/CT imaging were performed to determine the anatomic and metabolic tumour volume over three‐weeks in vivo. Additionally, the formation of reactive species after CAP treatment was assessed by non‐invasive chemiluminescence imaging of L‐012. Histological analysis and immunohistochemical staining for Ki‐67, ApopTag®, F4/80, CAE, and CD31, as well as protein expression of PCNA, caspase‐3 and cleaved‐caspase‐3, were performed to study proliferation, apoptosis, inflammation, and angiogenesis in CAP‐treated tumours. Results: As the main result, multimodal in vivo imaging revealed a substantial reduction in tumour growth and an increase in reactive species after CAP treatment, in comparison to untreated tu-mours. In contrast, neither the markers for apoptosis, nor the metabolic activity of both tumour entities was affected by CAP. Conclusions: These findings propose CAP as a potential adjuvant therapy option to established standard therapies of skin cancer.
  • Item
    Ex Vivo Exposure of Human Melanoma Tissue to Cold Physical Plasma Elicits Apoptosis and Modulates Inflammation
    (Basel : MDPI, 2020) Bekeschus, Sander; Moritz, Juliane; Helfrich, Iris; Boeckmann, Lars; Weltmann, Klaus-Dieter; Emmert, Steffen; Metelmann, Hans-Robert; Stoffels, Ingo; von Woedtke, Thomas
    Cutaneous melanoma is the most aggressive type of skin cancer with a not-sufficient clinical outcome. High tumor mutation rates often hamper a remedial treatment, creating the need for palliative care in many patients. To reduce pain and burden, local palliation often includes cryo-ablation, immunotherapy via injection of IL2, or electrochemotherapy. Yet, a fraction of patients and lesions do not respond to those therapies. To reach even these resistances in a redox-mediated way, we treated skin biopsies from human melanoma ex vivo with cold physical plasma (kINPen MED plasma jet). This partially ionized gas generates a potent mixture of reactive oxygen species (ROS). Physical plasmas have been shown to be potent antitumor agents in preclinical melanoma and clinical head and neck cancer research. The innovation of this technology lies in its ease-of-use without anesthesia, as the “cold” plasma temperature of the kINPen MED does not exceed 37 °C. In metastatic melanoma skin biopsies from six patients, we identified a marked increase of apoptosis with plasma treatment ex vivo. This had an impact on the chemokine/cytokine profile of the cultured biopsies, e.g., three of six patient-derived biopsy supernatants showed an apparent decrease in VEGF compared to non-plasma treated specimens. Moreover, the baseline release levels of 24 chemokines/cytokines investigated may serve as a useful tool for future research on melanoma skin biopsy treatments. Our findings suggest a clinically useful role of cold physical plasma therapy in palliation of cutaneous melanoma lesions, possibly in a combinatory setting with other immune therapies.