Search Results

Now showing 1 - 8 of 8
  • Item
    Complex network approach for detecting tropical cyclones
    (Berlin ; Heidelberg : Springer, 2021) Gupta, Shraddha; Boers, Niklas; Pappenberger, Florian; Kurths, Jürgen
    Tropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth’s surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Niño Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of the network topology over time scales relevant to TCs allows us to obtain crucial insights into the effects of TCs on the spatial connectivity structure of sea-level pressure fields.
  • Item
    Complex systems approaches for Earth system data analysis
    (Bristol : IOP Publ., 2021) Boers, Niklas; Kurths, Jürgen; Marwan, Norbert
    Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.
  • Item
    An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures
    (Bristol : IOP Publ., 2020) Ciemer, Catrin; Rehm, Lars; Kurths, Jürgen; Donner, Reik V.; Winkelmann, Ricarda; Boers, Niklas
    Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.
  • Item
    Seasonal prediction of Indian summer monsoon onset with echo state networks
    (Bristol : IOP Publ., 2021-7-1) Mitsui, Takahito; Boers, Niklas
    Although the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for water-resource management and agricultural planning on the Indian sub-continent, the long-term predictability—especially at seasonal time scales—is little explored and remains challenging. We propose a method based on artificial neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown that the meridional tropospheric temperature gradient in the boreal winter season already contains the signals needed for predicting the ISM onset in the subsequent summer season. Our study demonstrates that machine-learning-based approaches can be simultaneously helpful for both data-driven prediction and enhancing the process understanding of climate phenomena.
  • Item
    Significance of uncertain phasing between the onsets of stadial–interstadial transitions in different Greenland ice core proxies
    (Katlenburg-Lindau : Copernicus Ges., 2021) Riechers, Keno; Boers, Niklas
    Different paleoclimate proxy records evidence repeated abrupt climate transitions during previous glacial intervals. These transitions are thought to comprise abrupt warming and increase in local precipitation over Greenland, sudden reorganization of the Northern Hemisphere atmospheric circulation, and retreat of sea ice in the North Atlantic. The physical mechanism underlying these so-called Dansgaard–Oeschger (DO) events remains debated. A recent analysis of Greenland ice core proxy records found that transitions in Na+ concentrations and δ18O values are delayed by about 1 decade with respect to corresponding transitions in Ca2+ concentrations and in the annual layer thickness during DO events. These delays are interpreted as a temporal lag of sea-ice retreat and Greenland warming with respect to a synoptic- and hemispheric-scale atmospheric reorganization at the onset of DO events and may thereby help constrain possible triggering mechanisms for the DO events. However, the explanatory power of these results is limited by the uncertainty of the transition onset detection in noisy proxy records. Here, we extend previous work by testing the significance of the reported lags with respect to the null hypothesis that the proposed transition order is in fact not systematically favored. If the detection uncertainties are averaged out, the temporal delays in the δ18O and Na+ transitions with respect to their counterparts in Ca2+ and the annual layer thickness are indeed pairwise statistically significant. In contrast, under rigorous propagation of uncertainty, three statistical tests cannot provide evidence against the null hypothesis. We thus confirm the previously reported tendency of delayed transitions in the δ18O and Na+ concentration records. Yet, given the uncertainties in the determination of the transition onsets, it cannot be decided whether these tendencies are truly the imprint of a prescribed transition order or whether they are due to chance. The analyzed set of DO transitions can therefore not serve as evidence for systematic lead–lag relationships between the transitions in the different proxies, which in turn limits the power of the observed tendencies to constrain possible physical causes of the DO events.
  • Item
    Impact of an AMOC weakening on the stability of the southern Amazon rainforest
    (Berlin ; Heidelberg : Springer, 2021) Ciemer, Catrin; Winkelmann, Ricarda; Kurths, Jürgen; Boers, Niklas
    The Atlantic Meridional Overturning Circulation (AMOC) and the Amazon rainforest are potential tipping elements of the Earth system, i.e., they may respond with abrupt and potentially irreversible state transitions to a gradual change in forcing once a critical forcing threshold is crossed. With progressing global warming, it becomes more likely that the Amazon will reach such a critical threshold, due to projected reductions of precipitation in tropical South America, which would in turn trigger vegetation transitions from tropical forest to savanna. At the same time, global warming has likely already contributed to a weakening of the AMOC, which induces changes in tropical Atlantic sea-surface temperature (SST) patterns that in turn affect rainfall patterns in the Amazon. A large-scale decline or even dieback of the Amazon rainforest would imply the loss of the largest terrestrial carbon sink, and thereby have drastic consequences for the global climate. Here, we assess the direct impact of greenhouse gas-driven warming of the tropical Atlantic ocean on Amazon rainfall. In addition, we estimate the effect of an AMOC slowdown or collapse, e. g. induced by freshwater flux into the North Atlantic due to melting of the Greenland Ice Sheet, on Amazon rainfall. In order to provide a clear explanation of the underlying dynamics, we use a simple, but robust mathematical approach (based on the classical Stommel two-box model), ensuring consistency with a comprehensive general circulation model (HadGEM3). We find that these two processes, both caused by global warming, are likely to have competing impacts on the rainfall sum in the Amazon, and hence on the stability of the Amazon rainforest. A future AMOC decline may thus counteract direct global-warming-induced rainfall reductions. Tipping of the AMOC from the strong to the weak mode may therefore have a stabilizing effect on the Amazon rainforest.
  • Item
    Analysis of a bistable climate toy model with physics-based machine learning methods
    (Berlin ; Heidelberg : Springer, 2021) Gelbrecht, Maximilian; Lucarini, Valerio; Boers, Niklas; Kurths, Jürgen
    We propose a comprehensive framework able to address both the predictability of the first and of the second kind for high-dimensional chaotic models. For this purpose, we analyse the properties of a newly introduced multistable climate toy model constructed by coupling the Lorenz ’96 model with a zero-dimensional energy balance model. First, the attractors of the system are identified with Monte Carlo Basin Bifurcation Analysis. Additionally, we are able to detect the Melancholia state separating the two attractors. Then, Neural Ordinary Differential Equations are applied to predict the future state of the system in both of the identified attractors.
  • Item
    Neural partial differential equations for chaotic systems
    ([London] : IOP, 2021) Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen
    When predicting complex systems one typically relies on differential equation which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. We show that this can be used to predict paradigmatic, high-dimensional chaotic partial differential equations even when only short and incomplete datasets are available. The forecast horizon for these high dimensional systems is about an order of magnitude larger than the length of the training data.