Search Results

Now showing 1 - 3 of 3
  • Item
    An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures
    (Bristol : IOP Publ., 2020) Ciemer, Catrin; Rehm, Lars; Kurths, Jürgen; Donner, Reik V.; Winkelmann, Ricarda; Boers, Niklas
    Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.
  • Item
    Theoretical and paleoclimatic evidence for abrupt transitions in the Earth system
    (Bristol : IOP Publ., 2022) Boers, Niklas; Ghil, Michael; Stocker, Thomas F.
    Specific components of the Earth system may abruptly change their state in response to gradual changes in forcing. This possibility has attracted great scientific interest in recent years, and has been recognized as one of the greatest threats associated with anthropogenic climate change. Examples of such components, called tipping elements, include the Atlantic Meridional Overturning Circulation, the polar ice sheets, the Amazon rainforest, as well as the tropical monsoon systems. The mathematical language to describe abrupt climatic transitions is mainly based on the theory of nonlinear dynamical systems and, in particular, on their bifurcations. Applications of this theory to nonautonomous and stochastically forced systems are a very active field of climate research. The empirical evidence that abrupt transitions have indeed occurred in the past stems exclusively from paleoclimate proxy records. In this review, we explain the basic theory needed to describe critical transitions, summarize the proxy evidence for past abrupt climate transitions in different parts of the Earth system, and examine some candidates for future abrupt transitions in response to ongoing anthropogenic forcing. Predicting such transitions remains difficult and is subject to large uncertainties. Substantial improvements in our understanding of the nonlinear mechanisms underlying abrupt transitions of Earth system components are needed. We argue that such an improved understanding requires combining insights from (a) paleoclimatic records; (b) simulations using a hierarchy of models, from conceptual to comprehensive ones; and (c) time series analysis of recent observation-based data that encode the dynamics of the present-day Earth system components that are potentially prone to tipping.
  • Item
    Seasonal prediction of Indian summer monsoon onset with echo state networks
    (Bristol : IOP Publ., 2021-7-1) Mitsui, Takahito; Boers, Niklas
    Although the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for water-resource management and agricultural planning on the Indian sub-continent, the long-term predictability—especially at seasonal time scales—is little explored and remains challenging. We propose a method based on artificial neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown that the meridional tropospheric temperature gradient in the boreal winter season already contains the signals needed for predicting the ISM onset in the subsequent summer season. Our study demonstrates that machine-learning-based approaches can be simultaneously helpful for both data-driven prediction and enhancing the process understanding of climate phenomena.