Search Results

Now showing 1 - 3 of 3
  • Item
    Damage functions for climate-related hazards: Unification and uncertainty analysis
    (Göttingen : Copernicus GmbH, 2016) Prahl, B.F.; Rybski, D.; Boettle, M.; Kropp, J.P.
  • Item
    Quantifying the effect of sea level rise and flood defence - A point process perspective on coastal flood damage
    (Göttingen : Copernicus GmbH, 2016) Boettle, M.; Rybski, D.; Kropp, J.P.
  • Item
    About the influence of elevation model quality and small-scale damage functions on flood damage estimation
    (Göttingen : Copernicus GmbH, 2011) Boettle, M.; Kropp, J.P.; Reiber, L.; Roithmeier, O.; Rybski, D.; Walther, C.
    The assessment of coastal flood risks in a particular region requires the estimation of typical damages caused by storm surges of certain characteristics and annualities. Although the damage depends on a multitude of factors, including flow velocity, duration of flood, precaution, etc., the relationship between flood events and the corresponding average damages is usually described by a stage-damage function, which considers the maximum water level as the only damage influencing factor. Starting with different (microscale) building damage functions we elaborate a macroscopic damage function for the entire case study area Kalundborg (Denmark) on the basis of multiple coarse-graining methods and assumptions of the hydrological connectivity. We find that for small events, the macroscopic damage function mostly depends on the properties of the elevation model, while for large events it strongly depends on the assumed building damage function. In general, the damage in the case study increases exponentially up to a certain level and then less steep.