Search Results

Now showing 1 - 2 of 2
  • Item
    Perfluoroalkylfullerenes
    (Washington, DC : ACS Publ., 2015) Boltalina, Olga V.; Popov, Alexey A.; Kuvychko, Igor V.; Shustova, Natalia B.; Strauss, Steven H.
    New chemical derivatives that possess the greatest variety of addition patterns than any other class of fullerene derivatives represent an important addition to the existing classes of perfluorocarbons, that is, compounds that are composed only of the two types of atoms, carbon and fluorine. These include aromatic and aliphatic perfluorocarbons such as perfluorodecalin, perfluorononane, hexafluorobenzene, etc., which are important as fluorous solvents used in medicine. The propensity of perfluoroalkylfullerenes (PFAFs) to readily crystallize from organic solutions upon slow evaporation in open air provided a straightforward access to their molecular structures via X-ray crystallography. Another crucial aspect that ensures future success in the characterization of numerous PFAFs of higher fullerenes and endohedral metallofullerenes is the possibility to apply HPLC methodologies to the separation of product mixtures. PFAFs, especially those of C60 and C70, are unique fullerene derivatives in terms of the number of structurally characterized derivatives with different number of RF groups and different addition patterns.
  • Item
    PAH/PAH(CF3)n Donor/Acceptor Charge-Transfer Complexes in Solution and in Solid-State Co-Crystals
    (Weinheim : Wiley-VCH, 2019) Castro, Karlee P.; Bukovsky, Eric V.; Kuvychko, Igor V.; DeWeerd, Nicholas J.; Chen, Yu-Sheng; Deng, Shihu H.M.; Wang, Xue-Bin; Popov, Alexey A.; Strauss, Steven H.; Boltalina, Olga V.
    A solution, solid-state, and computational study is reported of polycyclic aromatic hydrocarbon PAH/PAH(CF3)n donor/acceptor (D/A) charge-transfer complexes that involve six PAH(CF3)n acceptors with known gas-phase electron affinities that range from 2.11(2) to 2.805(15) eV and four PAH donors, including seven CT co-crystal X-ray structures that exhibit hexagonal arrays of mixed π-stacks with 1/1, 1/2, or 2/1 D/A stoichiometries (PAH=anthracene, azulene, coronene, perylene, pyrene, triphenylene; n=5, 6). These are the first D/A CT complexes with PAH(CF3)n acceptors to be studied in detail. The nine D/A combinations were chosen to allow several structural and electronic comparisons to be made, providing new insights about controlling D/A interactions and the structures of CT co-crystals. The comparisons include, among others, CT complexes of the same PAH(CF3)n acceptor with four PAH donors and CT complexes of the same donor with four PAH(CF3)n acceptors. All nine CT complexes exhibit charge-transfer bands in solution with λmax between 467 and 600 nm. A plot of E(λmax) versus [IE(donor)−EA(acceptor)] for the nine CT complexes studied is linear with a slope of 0.72±0.03 eV eV−1. This plot is the first of its kind for CT complexes with structurally related donors and acceptors for which precise experimental gas-phase IEs and EAs are known. It demonstrates that conclusions based on the common assumption that the slope of a CT E(λmax) versus [IE−EA] plot is unity may be incorrect in at least some cases and should be reconsidered. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim