Search Results

Now showing 1 - 3 of 3
  • Item
    Multiple cropping systems of the world and the potential for increasing cropping intensity
    (Amsterdam [u.a.] : Elsevier, 2020) Waha, Katharina; Dietrich, Jan Philipp; Portmann, Felix T.; Siebert, Stefan; Thornton, Philip K.; Bondeau, Alberte; Herrero, Mario
    Multiple cropping, defined as harvesting more than once a year, is a widespread land management strategy in tropical and subtropical agriculture. It is a way of intensifying agricultural production and diversifying the crop mix for economic and environmental benefits. Here we present the first global gridded data set of multiple cropping systems and quantify the physical area of more than 200 systems, the global multiple cropping area and the potential for increasing cropping intensity. We use national and sub-national data on monthly crop-specific growing areas around the year 2000 (1998–2002) for 26 crop groups, global cropland extent and crop harvested areas to identify sequential cropping systems of two or three crops with non-overlapping growing seasons. We find multiple cropping systems on 135 million hectares (12% of global cropland) with 85 million hectares in irrigated agriculture. 34%, 13% and 10% of the rice, wheat and maize area, respectively are under multiple cropping, demonstrating the importance of such cropping systems for cereal production. Harvesting currently single cropped areas a second time could increase global harvested areas by 87–395 million hectares, which is about 45% lower than previous estimates. Some scenarios of intensification indicate that it could be enough land to avoid expanding physical cropland into other land uses but attainable intensification will depend on the local context and the crop yields attainable in the second cycle and its related environmental costs. © 2020 The Author(s)
  • Item
    Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields
    (Amsterdam : Elsevier, 2011) Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.
    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply.
  • Item
    Europäische Ökosysteme 1989 - 1998: Quantitative Analyse unter Verwendung von Satelliten-Fernerkundungsdaten - Teilprojekt Modelle : Schlußbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2001) Cramer, Wolfgang; Lucht, Wolfgang; Bondeau, Alberte
    [no abstract available]