Search Results

Now showing 1 - 6 of 6
  • Item
    Ceria/silicon carbide core–shell materials prepared by miniemulsion technique
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2011) Borchardt, Lars; Oschatz, Martin; Frind, Robert; Kockrick, Emanuel; Lohe, Martin R.; Hauser, Christoph P.; Weiss, Clemens K.; Landfester, Katharina; Büchner, Bernd; Kaskel, Stefan
    For the first time we present the synthesis of CeO2/Si(O)C core–shell particles prepared by the miniemulsion technique. The Si(O)C core was obtained by means of a polycarbosilane precursor (SMP10), which was subsequently functionalized with ceria and pyrolyzed to the ceramic. The size of these particles could easily be adjusted by varying the surfactants and the surfactant concentration, or by the addition of comonomers. Hence particle sizes ranged from 100 to 1000 nm, tunable by the preparation conditions. All materials were characterized by photon cross correlation spectroscopy, scanning electron microscopy and elemental mapping investigations. Furthermore, first catalytic tests were carried out by temperature programmed oxidation (TPO) of methane, and the activity of this material in lowering the onset temperature of methane combustion by 262 K was documented.
  • Item
    Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Leistenschneider, Desirée; Jäckel, Nicolas; Hippauf, Felix; Presser, Volker; Borchardt, Lars
    A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN) and 81% at 10 A g−1 in EMIM-BF4.
  • Item
    Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2015) Oschatz, Martin; Zeiger, Marco; Jaeckel, Nicolas; Strubel, Patrick; Borchardt, Lars; Reinhold, Romy; Nickel, Winfried; Eckert, Jürgen; Presser, Volker; Kaskel, Stefan
    A new approach to produce carbide-derived carbon nanospheres of 20-200 nm in diameter based on a novel soft-templating technique is presented. Platinum catalysis is used for the cross-linking of liquid (allylhydrido)polycarbosilane polymer chains with para-divinylbenzene within oil-in-water miniemulsions. Quantitative implementation of the pre-ceramic polymer can be achieved allowing precise control over the resulting materials. After pyrolysis and high-temperature chlorine treatment, resulting particles offer ideal spherical shape, very high specific surface area (up to 2347 m^2/g^-1), and large micro/mesopore volume (up to 1.67 cm^3/g^-1). The internal pore structure of the nanospheres is controllable by the composition of the oil phase within the miniemulsions. The materials are highly suitable for electrochemical double-layer capacitors with high specific capacitances in aqueous 1 M Na2SO4 solution (110 F/g^-1) and organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile (130 F/g^-1).
  • Item
    Titanium Niobium Oxide Ti2 Nb10 O29 /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for High-Performance Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Budak, Öznil; Srimuk, Pattarachai; Aslan, Mesut; Shim, Hwirim; Borchardt, Lars; Presser, Volker
    This work introduces the facile and scalable two-step synthesis of Ti2 Nb10 O29 (TNO)/carbon hybrid material as a promising anode for lithium-ion batteries (LIBs). The first step consisted of a mechanically induced self-sustaining reaction via ball-milling at room temperature to produce titanium niobium carbide with a Ti and Nb stoichiometric ratio of 1 to 5. The second step involved the oxidation of as-synthesized titanium niobium carbide to produce TNO. Synthetic air yielded fully oxidized TNO, while annealing in CO2 resulted in TNO/carbon hybrids. The electrochemical performance for the hybrid and non-hybrid electrodes was surveyed in a narrow potential window (1.0-2.5 V vs. Li/Li+ ) and a large potential window (0.05-2.5 V vs. Li/Li+ ). The best hybrid material displayed a specific capacity of 350 mAh g-1 at a rate of 0.01 A g-1 (144 mAh g-1 at 1 A g-1 ) in the large potential window regime. The electrochemical performance of hybrid materials was superior compared to non-hybrid materials for operation within the large potential window. Due to the advantage of carbon in hybrid material, the rate handling was faster than that of the non-hybrid one. The hybrid materials displayed robust cycling stability and maintained ca. 70 % of their initial capacities after 500 cycles. In contrast, only ca. 26 % of the initial capacity was maintained after the first 40 cycles for non-hybrid materials. We also applied our hybrid material as an anode in a full-cell lithium-ion battery by coupling it with commercial LiMn2 O4 .
  • Item
    Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Zeiger, Marco; Massuti-Ballester, Pau; Fleischmann, Simon; Formanek, Petr; Borchardt, Lars; Presser, Volker
    In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.