Search Results

Now showing 1 - 2 of 2
  • Item
    A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche
    (Pavia : Ferrata Storti Foundation, 2017) Bray, Laura J.; Binner, Marcus; Körner, Yvonne; von Bonin, Malte; Bornhäuser, Martin; Werner, Carsten
    Ex vivo studies of human disease, such as acute myeloid leukemia, are generally limited to the analysis of two-dimensional cultures which often misinterpret the effectiveness of chemotherapeutics and other treatments. Here we show that matrix metalloproteinase-sensitive hydrogels prepared from poly(ethylene glycol) and heparin functionalized with adhesion ligands and pro-angiogenic factors can be instrumental to produce robust three-dimensional culture models, allowing for the analysis of acute myeloid leukemia development and response to treatment. We evaluated the growth of four leukemia cell lines, KG1a, MOLM13, MV4-11 and OCI-AML3, as well as samples from patients with acute myeloid leukemia. Furthermore, endothelial cells and mesenchymal stromal cells were co-seeded to mimic the vascular niche for acute myeloid leukemia cells. Greater drug resistance to daunorubicin and cytarabine was demonstrated in three-dimensional cultures and in vascular co-cultures when compared with two-dimensional suspension cultures, opening the way for drug combination studies. Application of the C-X-C chemokine receptor type 4 (CXCR4) inhibitor, AMD3100, induced mobilization of the acute myeloid leukemia cells from the vascular networks. These findings indicate that the three-dimensional tri-culture model provides a specialized platform for the investigation of cell-cell interactions, addressing a key challenge of current testing models. This ex vivo system allows for personalized analysis of the responses of patients’ cells, providing new insights into the development of acute myeloid leukemia and therapies for this disease.
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.