Search Results

Now showing 1 - 5 of 5
  • Item
    Textured Sb2Te3 films and GeTe/Sb2Te3 superlattices grown on amorphous substrates by molecular beam epitaxy
    (New York : American Institute of Physics, 2017) Boschker, Jos E.; Tisbi, E.; Placidi, E.; Momand, Jamo; Redaelli, Andrea; Kooi, Bart J.; Arciprete, Fabrizio; Calarco, Raffaella
    The realization of textured films of 2-dimensionally (2D) bonded materials on amorphous substrates is important for the integration of this material class with silicon based technology. Here, we demonstrate the successful growth by molecular beam epitaxy of textured Sb2Te3 films and GeTe/Sb2Te3 superlattices on two types of amorphous substrates: carbon and SiO2. X-ray diffraction measurements reveal that the out-of-plane alignment of grains in the layers has a mosaic spread with a full width half maximum of 2.8°. We show that a good texture on SiO2 is only obtained for an appropriate surface preparation, which can be performed by ex situ exposure to Ar+ ions or by in situ exposure to an electron beam. X-ray photoelectron spectroscopy reveals that this surface preparation procedure results in reduced oxygen content. Finally, it is observed that film delamination can occur when a capping layer is deposited on top of a superlattice with a good texture. This is attributed to the stress in the capping layer and can be prevented by using optimized deposition conditions of the capping layer. The obtained results are also relevant to the growth of other 2D materials on amorphous substrates.
  • Item
    Interface formation of two- and three-dimensionally bonded materials in the case of GeTe–Sb2Te3 superlattices
    (Cambridge : Royal Society of Chemistry, 2015) Momand, Jamo; Wang, Ruining; Boschker, Jos E.; Verheijen, Marcel A.; Calarcob, Raffaella; Kooi, Bart J.
    GeTe–Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)–Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized particularly with cross-sectional HAADF scanning transmission electron microscopy. Contrary to the previously proposed models, it is found that the ground state of the film actually consists of van der Waals bonded layers (i.e. a van der Waals heterostructure) of Sb2Te3 and rhombohedral GeSbTe. Moreover, it is shown by annealing the film at 400 °C, which reconfigures the superlattice into bulk rhombohedral GeSbTe, that this van der Waals layer is thermodynamically favored. These results are explained in terms of the bonding dimensionality of GeTe and Sb2Te3 and the strong tendency of these materials to intermix. The findings debate the previously proposed switching mechanisms of superlattice phase-change materials and give new insights in their possible memory application.
  • Item
    Formation of resonant bonding during growth of ultrathin GeTe films
    (London : Nature Publishing Group, 2017) Wang, Ruining; Zhang, Wei; Momand, Jamo; Ronneberger, Ider; Boschker, Jos E.; Mazzarello, Riccardo; Kooi, Bart J.; Riechert, Henning; Wuttig, Matthias; Calarco, Raffaella
    A highly unconventional growth scenario is reported upon deposition of GeTe films on the hydrogen passivated Si(111) surface. Initially, an amorphous film forms for growth parameters that should yield a crystalline material. The entire amorphous film then crystallizes once a critical thickness of four GeTe bilayers is reached, subsequently following the GeTe(111) 
  • Item
    Modulation of van der Waals and classical epitaxy induced by strain at the Si step edges in GeSbTe alloys
    (London : Nature Publishing Group, 2017) Zallo, Eugenio; Cecchi, Stefano; Boschker, Jos E.; Mio, Antonio M.; Arciprete, Fabrizio; Privitera, Stefania; Calarco, Raffaella
    The present work displays a route to design strain gradients at the interface between substrate and van der Waals bonded materials. The latter are expected to grow decoupled from the substrates and fully relaxed and thus, by definition, incompatible with conventional strain engineering. By the usage of passivated vicinal surfaces we are able to insert strain at step edges of layered chalcogenides, as demonstrated by the tilt of the epilayer in the growth direction with respect of the substrate orientation. The interplay between classical and van der Waals epitaxy can be modulated with an accurate choice of the substrate miscut. High quality crystalline GexSb2Te3+x with almost Ge1Sb2Te4 composition and improved degree of ordering of the vacancy layers is thus obtained by epitaxial growth of layers on 3–4° stepped Si substrates. These results highlight that it is possible to build and control strain in van der Waals systems, therefore opening up new prospects for the functionalization of epilayers by directly employing vicinal substrates.
  • Item
    Coincident-site lattice matching during van der Waals epitaxy
    (London : Nature Publishing Group, 2015) Boschker, Jos E.; Galves, Lauren A.; Flissikowski, Timur; Lopes, Joao Marcelo J.; Kiemer, Alexandra K.; Riechert, Henning; Calarco, Raffaella
    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures.