Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?

2020-1-15, Biswas, Sourav, Muzata, Tanyaradzwa S., Krause, Beate, Rzeczkowski, Piotr, Pötschke, Petra, Bose, Suryasarathi

A suitable polymer matrix and well dispersed conducting fillers forming an electrically conducting network are the prime requisites for modern age electromagnetic shield designing. An effective polymer-based shield material is designed that can attenuate 99.9% of incident electromagnetic (EM) radiation at a minimum thickness of <0.5 mm. This is accomplished by the choice of a suitable partially crystalline polymer matrix while comparing non-polar polypropylene (PP) with polar polyvinylidene fluoride (PVDF) and a best suited filler nanomaterial by comparing different types of carbon nanotubes such as; branched, single-walled and multi-walled carbon nanotubes, which were added in only 2 wt %. Different types of interactions (polar-polar and CH-π and donor-acceptor) make b-MWCNT more dispersible in the PVDF matrix, which together with high crystallinity resulted in the best electrical conductivity and electromagnetic shielding ability of this composite. This investigation additionally conceals the issues related to the thickness of the shield material just by stacking individual thin nanocomposite layers containing different carbon nanotube (CNT) types with 0.3 mm thickness in a simple manner and finally achieves 99.999% shielding efficiency at just 0.9 mm thickness when using a suitable order of the different PVDF based nanocomposites.

Loading...
Thumbnail Image
Item

Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution

2021, Sushmita, Kumari, Formanek, Petr, Fischer, Dieter, Pötschke, Petra, Madras, Giridhar, Bose, Suryasarathi

The use of electronic devices and wireless networks is increasing rapidly, and electromagnetic (EM) pollution remediation remains a challenge. We employed a unique approach to fabricate two ultrathin (approx. 53 μm) multilayered assemblies to address this. By sequentially stacking thin films of polyvinylidene difluoride (PVDF) and polycarbonate (PC) nanocomposites and interfacially locking them with a mutually miscible polymer (PMMA, polymethyl methacrylate), materials with enhanced structural properties and electromagnetic interference (EMI) shielding performance can be designed. Utilizing reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) as a template, ferrite was grown on the surface to design two different nanohybrid structures (rGO–Fe3O4 and MoS2–Fe3O4). PVDF was composited with either rGO–Fe3O4 or MoS2–Fe3O4, and multiwall carbon nanotubes (CNTs) were dispersed in the PC component. As PC and PVDF are immiscible, their poor interface would result in inferior structural properties, which can be challenging in designing EMI shielding materials due to cyclic thermal fatigue. Hence, PMMA is sandwiched to interfacially stitch the components (PC and PVDF) and improve interfacial adhesion. This was confirmed using SEM/EDS and Raman mapping/imaging. The mechanical stability of the multilayered assemblies was characterized using a dynamic mechanical analyzer (DMA), and the storage modulus was found to be as high as 2767 MPa at 40 °C (@constant frequency and strain amplitude), for the multilayered film with rGO–Fe3O4 in PVDF, PMMA as a sandwich layer and CNTs in PC. A typical assembly of 9 multilayers (∼480 μm) with rGO–Fe3O4 in PVDF, and CNTs in PC, and interfacially stitched with PMMA gave rise to a high EMI shield effectiveness (SET) of −26.3 dB @ 26.5 GHz. This unique arrangement of a multilayered assembly suppressed EMI primarily by absorption.