Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Sub-laser-cycle control of coupled electron–nuclear dynamics at a conical intersection

2015, Richter, Maria, Bouakline, Foudhil, González-Vázquez, Jesús, Martínez-Fernández, Lara, Corral, Inés, Patchkovskii, Serguei, Morales, Felipe, Ivanov, Misha, Martín, Fernando, Smirnova, Olga

Nonadiabatic processes play a fundamental role in the understanding of photochemical processes in excited polyatomic molecules. A particularly important example is that of radiationless electronic relaxation at conical intersections (CIs). We discuss new opportunities for controlling coupled electron–nuclear dynamics at CIs, offered by the advent of nearly single-cycle, phase-stable, mid-infrared laser pulses. To illustrate the control mechanism, a two-dimensional model of the NO2 molecule is considered. The key idea of the control scheme is to match the time scale of the laser field oscillations to the characteristic time scale of the wave packet transit through the CI. The instantaneous laser field changes the shape and position of the CI as the wave packet passes through. As the CI moves in the laser field, it 'slices' through the wave packet, sculpting it in the coordinate and momentum space in a way that is sensitive to the carrier-envelope phase of the control pulse. We find that the electronic coherence imparted on the sub-laser-cycle time scale manifests during much longer nuclear dynamics that follow on the many tens of femtosecond time scale. Control efficiency as a function of molecular orientation is analyzed, showing that modest alignment is sufficient for showing the described effects.

Loading...
Thumbnail Image
Item

Differential Cross Sections for the H + D2 → HD(v′ = 3, j′ = 4-10) + D Reaction above the Conical Intersection

2015, Gao, Hong, Sneha, Mahima, Bouakline, Foudhil, Althorpe, Stuart C., Zare, Richard N.

We report rovibrationally selected differential cross sections (DCSs) of the benchmark reaction H + D2 → HD(v′ = 3, j′ = 4–10) + D at a collision energy of 3.26 eV, which exceeds the conical intersection of the H3 potential energy surface at 2.74 eV. We use the PHOTOLOC technique in which a fluorine excimer laser at 157.64 nm photodissociates hydrogen bromide (HBr) molecules to generate fast H atoms and the HD product is detected in a state-specific manner by resonance-enhanced multiphoton ionization. Fully converged quantum wave packet calculations were performed for this reaction at this high collision energy without inclusion of the geometric phase (GP) effect, which takes into account coupling to the first excited state of the H3 potential energy surface. Multimodal structures can be observed in most of the DCSs up to j′ = 10, which is predicted by theory and also well-reproduced by experiment. The theoretically calculated DCSs are in good overall agreement with the experimental measurements, which indicates that the GP effect is not large enough that its existence can be verified experimentally at this collision energy.