Search Results

Now showing 1 - 1 of 1
  • Item
    Characterization of the Si:Se+ Spin-Photon Interface
    (College Park, Md. [u.a.] : American Physical Society, 2019) DeAbreu, Adam; Bowness, Camille; Abraham, Rohan J.S.; Medvedova, Alzbeta; Morse, Kevin J.; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael L.W.; Simmons, Stephanie
    Silicon is the most-developed electronic and photonic technological platform and hosts some of the highest-performance spin and photonic qubits developed to date. A hybrid quantum technology harnessing an efficient spin-photon interface in silicon would unlock considerable potential by enabling ultralong-lived photonic memories, distributed quantum networks, microwave-to-optical photon converters, and spin-based quantum processors, all linked with integrated silicon photonics. However, the indirect band gap of silicon makes identification of efficient spin-photon interfaces nontrivial. Here we build upon the recent identification of chalcogen donors as a promising spin-photon interface in silicon. We determine that the spin-dependent optical degree of freedom has a transition dipole moment stronger than previously thought [here 1.96(8) D], and the spin T1 lifetime in low magnetic fields is longer than previously thought [here longer than 4.6(1.5) h]. We furthermore determine the optical excited-state lifetime [7.7(4) ns], and therefore the natural radiative efficiency [0.80(9)%], and by measuring the phonon sideband determine the zero-phonon emission fraction [16(1)%]. Taken together, these parameters indicate that an integrated quantum optoelectronic platform based on chalcogen-donor qubits in silicon is well within reach of current capabilities.