Search Results

Now showing 1 - 2 of 2
  • Item
    A DNS study of aerosol and small-scale cloud turbulence interaction
    (München : European Geopyhsical Union, 2016) Babkovskaia, Natalia; Rannik, Ullar; Phillips, Vaughan; Siebert, Holger; Wehner, Birgit; Boy, Michael
    The purpose of this study is to investigate the interaction between small-scale turbulence and aerosol and cloud microphysical properties using direct numerical simulations (DNS). We consider the domain located at the height of about 2000 m from the sea level, experiencing transient high supersaturation due to atmospheric fluctuations of temperature and humidity. To study the effect of total number of particles (Ntot) on air temperature, activation and supersaturation, we vary Ntot. To investigate the effect of aerosol dynamics on small-scale turbulence and vertical air motion, we vary the intensity of turbulent fluctuations and the buoyant force. We find that even a small number of aerosol particles (55.5 cm−3), and therefore a small droplet number concentration, strongly affects the air temperature due to release of latent heat. The system comes to an equilibrium faster and the relative number of activated particles appears to be smaller for larger Ntot. We conclude that aerosol particles strongly affect the air motion. In a case of updraught coursed by buoyant force, the presence of aerosol particles results in acceleration of air motion in vertical direction and increase of turbulent fluctuations.
  • Item
    Evaporation of sulfate aerosols at low relative humidity
    (Katlenburg-Lindau : EGU, 2017) Tsagkogeorgas, Georgios; Roldin, Pontus; Duplissy, Jonathan; Rondo, Linda; Tröstl, Jasmin; Slowik, Jay G.; Ehrhart, Sebastian; Franchin, Alessandro; Kürten, Andreas; Amorim, Antonio; Bianchi, Federico; Kirkby, Jasper; Petäjä, Tuukka; Baltensperger, Urs; Boy, Michael; Curtius, Joachim; Flagan, Richard C.; Kulmala, Markku; Donahue, Neil M.; Stratmann, Frank
    Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 (KSO3) are KH2SO4 Combining double low line 2-4 × 109 kg-1 and KSO3 ≥ 1.4 × g 1010 at 288.8± 5K.