Search Results

Now showing 1 - 10 of 26
  • Item
    Efficient coupling of electro-optical and heat-transport models for broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Radziunas, Mindaugas; Fuhrmann, Jürgen; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Koprucki, Thomas; Brée, Carsten; Wenzel, Hans; Bandelow, Uwe
    In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical-lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal-lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.
  • Item
    Transient pulse compression at a group velocity horizon
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Babushkin, Ihar; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave-packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting groupvelocity horizon can be exploited for adiabatic compression of the soliton down into the fewcycle regime. Here we show that both mechanisms can be combined. In such a transient compressor, parameters of the dispersive wave may then serve to actively control the soliton compression and adjust the pulse duration in the presence of disturbances. While a certain amount of control is already enabled by the delay between soliton and dispersive wave, the means of controlling the compression process are substantially enhanced by additionally manipulating the chirp of the dispersive wave. Moreover, controlling the chirp of the dispersive wave also enables correction for limitations of the compression scheme due to a self-frequency shift of the soliton or for uncompensated dispersion in the scheme. This substantially widens the practicality of the compression scheme and other applications of the highly efficient nonlinear interaction at the group-velocity horizon.
  • Item
    Beam combining scheme for high-power broad-area semiconductor lasers with Lyot-filtered reinjection: Modeling, simulations, and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Brée, Carsten; Raab, Volker; Montiel-Ponsoda, Joan; Garre-Werner, Guillermo; Staliunas, Kestutis; Bandelow, Uwe; Radziunas, Mindaugas
    A brightness- and power-scalable polarization beam combining scheme for high-power, broadarea semiconductor laser diodes is investigated numerically and experimentally. To achieve the beam combining, we employ Lyot-filtered optical reinjection from an external cavity, which forces lasing of the individual diodes on interleaved frequency combs with overlapping envelopes and enables a high optical coupling efficiency. Unlike conventional spectral beam combining schemes with diffraction gratings, the optical coupling efficiency is insensitive to thermal drifts of laser wavelengths. This scheme can be used for efficient coupling of a large number of laser diodes and paves the way towards using broad-area laser diode arrays for cost-efficient material processing, which requires high-brilliance emission and optical powers in the kW-regime.
  • Item
    Femtosecond filamentation by intensity clamping at a Freeman resonance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Hofmann, Michael; Brée, Carsten
    [no abstract available]
  • Item
    Chirped photonic crystal for spatially filtered optical feedback to a broad-area laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Brée, Carsten; Gailevicius, Darius; Purlys, Vytautas; Werner, Guillermo Garre; Staliunas, Kestutis; Rathsfeld, Andreas; Schmidt, Gunther; Radziunas, Mindaugas
    We derive and analyze an efficient model for reinjection of spatially filtered optical feedback from an external resonator to a broad area, edge emitting semiconductor laser diode. Spatial filtering is achieved by a chirped photonic crystal, with variable periodicity along the optical axis and negligible resonant backscattering. The optimal chirp is obtained from a genetic algorithm, which yields solutions that are robust against perturbations. Extensive numerical simulations of the composite system with our optoelectronic solver indicate that spatially filtered reinjection enhances lower-order transversal optical modes in the laser diode and, consequently, improves the spatial beam quality.
  • Item
    Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Birkholz, Simon; Brée, Carsten; Veselic, Ivan; Demircan, Ayhan; Steinmeyer, Günter
    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
  • Item
    Kramers-Kronig relations and high order nonlinear susceptibilities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    As previous theoretical results recently revealed, a Kramers-Kronig transform of multiphoton absorption rates allows for a precise prediction on the dispersion of the nonlinear refractive index $n_2$ in the near IR. It was shown that this method allows to reproduce recent experimental results on the importance of the higher-order Kerr effect. Extending these results, the current manuscript provides the dispersion of $n_2$ for all noble gases in excellent agreement with reference data. It is furthermore established that the saturation and inversion of the nonlinear refractive index is highly dispersive with wavelength, which indicates the existence of different filamentation regimes. While shorter laser wavelengths favor the well-established plasma clamping regime, the influence of the higher-order Kerr effect dominates in the long wavelength regime.
  • Item
    Cascaded self-compression of femtosecond pulses in filaments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Brée, Carsten; Bethge, Jens; Skupin, Stefan; Demircan, Ayhan; Steinmeyer, Günter
    Highly nonlinear wave propagation scenarios hold the potential to serve for energy concentration or pulse duration reduction of the input wave form, provided that a small range of input parameters be maintained. In particular when phenomena like rogue-wave formation or few-cycle optical pulses generation come into play, it becomes increasingly difficult to maintain control of the waveforms. Here we suggest an alternative approach towards the control of waveforms in a highly nonlinear system. Cascading pulse self-compression cycles at reduced nonlinearity limits the increase of input parameter sensitivity while still enabling an enhanced compression effect. This cascaded method is illustrated by experiments and in numerical simulations of the Nonlinear Schrödinger Equation, simulating the propagation of short optical pulses in a self-generated plasma.
  • Item
    Method for computing the nonlinear refractive index via Keldysh theory
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    By making use of the multiphoton limit of Keldysh theory, we show that for the case of two-photon absorption a Kramers-Kronig expansion can be used to calculate the nonlinear refractive index for different wavelenghts. We apply this method to various inert gases and compare the obtained numerical values to different experimental and theoretical results for the dispersion of the Kerr nonlinearity.
  • Item
    Filamentary pulse self-compression : the impact of the cell windows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Bethge, Jens; Nibbering, Erik T.J.; Skupin, Stefan; Bergé, Luc; Steinmeyer, Günter
    Self-compression of multi-millijoule laser pulses during filamentary propagation is usually explained by the interplay of self-focusing and defocusing effects, causing a substantial concentration of energy on the axis of the propagating optical pulse. Recently, it has been argued that cell windows may play a decisive role in the self-compression mechanism. As such windows have to be used for media other than air their presence is often unavoidable, yet they present a sudden non-adiabatic change in dispersion and nonlinearity that should lead to a destruction of the temporal and spatial integrity of the light bullets generated in the self-compression mechanism. We now experimentally prove that there is in fact a self-healing mechanism that helps to overcome the potentially destructive consequences of the cell windows. We show in two carefully conducted experiments that the cell window position decisively influences activation or inhibition of the self-healing mechanism. A comparison with a windowless cell shows that presence of this mechanism is an important prerequisite for the exploitation of self-compression effects in windowed cells filled with inert gases.