Search Results

Now showing 1 - 10 of 14
  • Item
    All-optical supercontinuum switching
    (London : Springer Nature, 2020) Melchert, Oliver; Brée, Carsten; Tajalli, Ayhan; Pape, Alexander; Arkhipov, Rostislav; Willms, Stephanie; Babushkin, Ihar; Skryabin, Dmitry; Steinmeyer, Günter; Morgner, Uwe; Demircan, Ayhan
    Efficient all-optical switching is a challenging task as photons are bosons and cannot immediately interact with each other. Consequently, one has to resort to nonlinear optical interactions, with the Kerr gate being the classical example. However, the latter requires strong pulses to switch weaker ones. Numerous approaches have been investigated to overcome the resulting lack of fan-out capability of all-optical switches, most of which relied on types of resonant enhancement of light-matter interaction. Here we experimentally demonstrate a novel approach that utilizes switching between different portions of soliton fission induced supercontinua, exploiting an optical event horizon. This concept enables a high switching efficiency and contrast in a dissipation free setting. Our approach enables fan-out, does not require critical biasing, and is at least partially cascadable. Controlling complex soliton dynamics paves the way towards building all-optical logic gates with advanced functionalities. © 2020, The Author(s).
  • Item
    Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
  • Item
    Kramers-Kronig relations and high order nonlinear susceptibilities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    As previous theoretical results recently revealed, a Kramers-Kronig transform of multiphoton absorption rates allows for a precise prediction on the dispersion of the nonlinear refractive index $n_2$ in the near IR. It was shown that this method allows to reproduce recent experimental results on the importance of the higher-order Kerr effect. Extending these results, the current manuscript provides the dispersion of $n_2$ for all noble gases in excellent agreement with reference data. It is furthermore established that the saturation and inversion of the nonlinear refractive index is highly dispersive with wavelength, which indicates the existence of different filamentation regimes. While shorter laser wavelengths favor the well-established plasma clamping regime, the influence of the higher-order Kerr effect dominates in the long wavelength regime.
  • Item
    Cascaded self-compression of femtosecond pulses in filaments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Brée, Carsten; Bethge, Jens; Skupin, Stefan; Demircan, Ayhan; Steinmeyer, Günter
    Highly nonlinear wave propagation scenarios hold the potential to serve for energy concentration or pulse duration reduction of the input wave form, provided that a small range of input parameters be maintained. In particular when phenomena like rogue-wave formation or few-cycle optical pulses generation come into play, it becomes increasingly difficult to maintain control of the waveforms. Here we suggest an alternative approach towards the control of waveforms in a highly nonlinear system. Cascading pulse self-compression cycles at reduced nonlinearity limits the increase of input parameter sensitivity while still enabling an enhanced compression effect. This cascaded method is illustrated by experiments and in numerical simulations of the Nonlinear Schrödinger Equation, simulating the propagation of short optical pulses in a self-generated plasma.
  • Item
    Method for computing the nonlinear refractive index via Keldysh theory
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    By making use of the multiphoton limit of Keldysh theory, we show that for the case of two-photon absorption a Kramers-Kronig expansion can be used to calculate the nonlinear refractive index for different wavelenghts. We apply this method to various inert gases and compare the obtained numerical values to different experimental and theoretical results for the dispersion of the Kerr nonlinearity.
  • Item
    Filamentary pulse self-compression : the impact of the cell windows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Bethge, Jens; Nibbering, Erik T.J.; Skupin, Stefan; Bergé, Luc; Steinmeyer, Günter
    Self-compression of multi-millijoule laser pulses during filamentary propagation is usually explained by the interplay of self-focusing and defocusing effects, causing a substantial concentration of energy on the axis of the propagating optical pulse. Recently, it has been argued that cell windows may play a decisive role in the self-compression mechanism. As such windows have to be used for media other than air their presence is often unavoidable, yet they present a sudden non-adiabatic change in dispersion and nonlinearity that should lead to a destruction of the temporal and spatial integrity of the light bullets generated in the self-compression mechanism. We now experimentally prove that there is in fact a self-healing mechanism that helps to overcome the potentially destructive consequences of the cell windows. We show in two carefully conducted experiments that the cell window position decisively influences activation or inhibition of the self-healing mechanism. A comparison with a windowless cell shows that presence of this mechanism is an important prerequisite for the exploitation of self-compression effects in windowed cells filled with inert gases.
  • Item
    Non-instantaneous polarization dynamics in dielectric media
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Hofmann, Michael; Hyyti, Janne; Birkholz, Simon; Bock, Martin; Das, Susanta K.; Grunwald, Rüdiger; Hoffmann, Mathias; Nagy, Tamas; Demircan, Ayhan; Jupé, Marco; Ristau, Detlev; Morgner, Uwe; Brée, Carsten; Woerner, Michael; Elsaesser, Thomas; Steinmeyer, Günter
    Third-order optical nonlinearities play a vital role for generation1,2 and characterization 3-5 of some of the shortest optical pulses to date, for optical switching applications6,7, and for spectroscopy8,9. In many cases, nonlinear optical effects are used far off resonance, and then an instantaneous temporal response is expected. Here, we show for the first time resonant frequency-resolved optical gating measurements1012 that indicate substantial nonlinear polarization relaxation times up to 6.5 fs in dielectric media, i.e., significantly beyond the shortest pulses directly available from commercial lasers. These effects are among the fastest effects observed in ultrafast spectroscopy. Numerical solutions of the time-dependent Schrödinger equation13,14 are in excellent agreement with experimental observations. The simulations indicate that pulse generation and characterization in the ultraviolet may be severely affected by this previously unreported effect. Moreover, our approach opens an avenue for application of frequency-resolved optical gating as a highly selective spectroscopic probe in high-field physics.
  • Item
    Modulation instability in filamentary self-compression
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    We numerically analyze filamentary propagation for various medium- and input pulse parameters and show that temporal self-compression can greatly benefit from refocusing events. Analyzing the dynamical behavior in the second focal spot, it turns out that a dispersive temporal break-up may appear due to the emission of a hyperbolic shock-wave from the self-steepened trailing edge of the pulse. This break-up event enhances the self-compression capabilities of laser filaments, enabling up to 12-fold temporal compression. Only slightly perturbing the input pulse parameters, we further identify a regime in which refocusing events give rise to extended subdiffractive propagation in a weakly ionized channel.
  • Item
    Symmetry breaking and strong persistent plasma currents via resonant destabilization of atoms
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Brée, Carsten; Hofmann, Michael; Babushkin, Ihar; Demircan, Ayhan; Morgner, Uwe; Kosareva, Olga G.; Savelev, Andrei B.; Husakou, Anton; Ivanov, Misha
    The ionization rate of an atom in a strong optical field can be resonantly enhanced by the presence of long-living atomic levels (so called Freeman resonances). This process is most prominent in the multiphoton ionization regime meaning that ionization event takes many optical cycles. Nevertheless, here we show that these resonances can lead to fast subcycle-scale plasma buildup at the resonant values of the intensity in the pump pulse. The fast buildup can break the cycletocycle symmetry of the ionization process, resulting in generation of persistent macroscopic plasma currents which remain after the end of the pulse. This, in turn, gives rise to a broadband radiation of unusual spectral structure forming a comb from terahertz (THz) to visible. This radiation contains fingerprints of the attosecond electronic dynamics in Rydberg states during ionization.
  • Item
    Adjustable pulse compression scheme for generation of few-cycle pulses in the mid-infrared
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    An novel adjustable adiabatic soliton compression scheme is presented, enabling a coherent pulse source with pedestal-free few-cycle pulses in the infrared or mid-infrared regime. This scheme relies on interaction of a dispersive wave and a soliton copropagating at nearly identical group velocities in a fiber with enhanced infrared transmission. The compression is achieved directly in one stage, without necessity of an external compensation scheme. Numerical simulations are employed to demonstrate this scheme for silica and fluoride fibers, indicating ultimate limitations as well as the possibility of compression down to the single-cycle regime. Such output pulses appear ideally suited as seed sources for parametric amplification schemes in the mid-infrared.