Search Results

Now showing 1 - 8 of 8
  • Item
    Ni-In Synergy in CO2Hydrogenation to Methanol
    (Washington, DC : ACS Publications, 2021) Zhu, Jiadong; Cannizzaro, Francesco; Liu, Liang; Zhang, Hao; Kosinov, Nikolay; Filot, Ivo A.W.; Rabeah, Jabor; Brückner, Angelika; Hensen, Emiel J.M.
    Indium oxide (In2O3) is a promising catalyst for selective CH3OH synthesis from CO2but displays insufficient activity at low reaction temperatures. By screening a range of promoters (Co, Ni, Cu, and Pd) in combination with In2O3using flame spray pyrolysis (FSP) synthesis, Ni is identified as the most suitable first-row transition-metal promoter with similar performance as Pd-In2O3. NiO-In2O3was optimized by varying the Ni/In ratio using FSP. The resulting catalysts including In2O3and NiO end members have similar high specific surface areas and morphology. The main products of CO2hydrogenation are CH3OH and CO with CH4being only observed at high NiO loading (≥75 wt %). The highest CH3OH rate (∼0.25 gMeOH/(gcath), 250 °C, and 30 bar) is obtained for a NiO loading of 6 wt %. Characterization of the as-prepared catalysts reveals a strong interaction between Ni cations and In2O3at low NiO loading (≤6 wt %). H2-TPR points to a higher surface density of oxygen vacancy (Ov) due to Ni substitution. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electron paramagnetic resonance analysis of the used catalysts suggest that Ni cations can be reduced to Ni as single atoms and very small clusters during CO2hydrogenation. Supportive density functional theory calculations indicate that Ni promotion of CH3OH synthesis from CO2is mainly due to low-barrier H2dissociation on the reduced Ni surface species, facilitating hydrogenation of adsorbed CO2on Ov © 2021 The Authors. Published by American Chemical Society
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production
    (Basel : MDPI, 2018-1-29) Sivasankaran, Ramesh P.; Rockstroh, Nils; Hollmann, Dirk; Kreyenschulte, Carsten R.; Agostini, Giovanni; Lund, Henrik; Acharjya, Amitava; Rabeah, Jabor; Bentrup, Ursula; Junge, Henrik; Thomas, Arne; Brückner, Angelika
    Solar hydrogen production from water could be a sustainable and environmentally friendly alternative to fossil energy carriers, yet so far photocatalysts active and stable enough for large-scale applications are not available, calling for advanced research efforts. In this work, H2 evolution rates of up to 1968 and 5188 μmol h−1 g−1 were obtained from aqueous solutions of triethanolamine (TEOA) and oxalic acid (OA), respectively, by irradiating composites of AgIn5S8 (AIS), mesoporous C3N4 (CN, surface area >150 m2/g) and ≤2 wt.% in-situ photodeposited Pt nanoparticles (NPs) with UV-vis (≥300 nm) and pure visible light (≥420 nm). Structural properties and electron transport in these materials were analyzed by XRD, STEM-HAADF, XPS, UV-vis-DRS, ATR-IR, photoluminescence and in situ-EPR spectroscopy. Initial H2 formation rates were highest for Pt/CN, yet with TEOA this catalyst deactivated by inclusion of Pt NPs in the matrix of CN (most pronounced at λ ≥ 300 nm) while it remained active with OA, since in this case Pt NPs were enriched on the outermost surface of CN. In Pt/AIS-CN catalysts, Pt NPs were preferentially deposited on the surface of the AIS phase which prevents them from inclusion in the CN phase but reduces simultaneously the initial H2 evolution rate. This suggests that AIS hinders transport of separated electrons from the CN conduction band to Pt NPs but retains the latter accessible by protons to produce H2.
  • Item
    The Effect of Iron and Vanadium in VOy/Ce1-xFexO2-δ Catalysts in Low-Temperature Selective Catalytic Reduction of NOx by Ammonia
    (Weinheim : WileyY-VCH Verlag, 2020) Keller, Sonja; Agostini, Giovanni; Antoni, Hendrik; Kreyenschulte, Carsten R.; Atia, Hanan; Rabeah, Jabor; Bentrup, Ursula; Brückner, Angelika
    Supported VOy/Ce1-xFexO2-δ catalysts (x=0, 0.5, 0.1, 0.2) and bare supports were prepared and tested in selective catalytic reduction (SCR) of NOx by NH3 between 150 and 300 °C with a GHSV of 70 000 h−1. Iron was found to be beneficial for the activity of the pristine supports, reaching 80 % conversion at 275 °C. When vanadium was additionally introduced into the system, iron was found to be detrimental for NOx-conversion. To derive structure-reactivity relationships, V-free supports and VOy/Ce1-xFexO2-δ catalysts were characterized by XRD, XPS, Raman spectroscopy and TEM. In situ XANES, as well as operando DRIFTS and EPR measurements were performed to study the behavior of the catalysts under reaction conditions. Up to an iron content of x=0.1, a solid Ce1-xFexO2-δ solution was formed. Higher iron contents led to formation of iron oxide agglomerates. These agglomerates, as well as an increased amount of surface oxygen species were found to be responsible for increased NOx-conversion over of pure supports. For V-containing catalysts, an interaction of Fe and V centers could be found. Under reaction conditions, Fe3+ was preferentially reduced instead of V5+, decreasing the catalytic activity of VOy/Ce1-xFexO2-δ. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions
    (Cambridge : RSC, 2017) Sherborne, Grant J.; Adomeit, Sven; Menzel, Robert; Rabeah, Jabor; Brückner, Angelika; Fielding, Mark R.; Willans, Charlotte E.; Nguyen, Bao N.
    A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.
  • Item
    Impact of Al Activators on Structure and Catalytic Performance of Cr Catalysts in Homogeneous Ethylene Oligomerization : A Multitechnique in situ/operando Study
    (Weinheim : Wiley-VCH Verlag, 2019) Grauke, Reni; Schepper, Rahel; Rabeah, Jabor; Schoch, Roland; Bentrup, Ursula; Bauer, Matthias; Brückner, Angelika
    The effect of different AlR3 activators (R=methyl, ethyl, isobutyl, n-octyl) has been studied in comparison to modified methylaluminoxane (MMAO) by operando EPR as well as by in situ UV-vis, ATR-IR and XANES/EXAFS spectroscopy during oligomerization of ethylene at 20 bar and 40 °C with a homogeneous Cr complex catalyst formed in situ upon mixing a Cr(acac)3 precursor, a Ph2PN(iPr)PPh2 ligand (PNP) and the activator. Coordination of PNP to Cr(acac)3 is initiated only in the presence of an activator. Highest 1-octene productivity (detected during operando EPR measurements) was obtained with MMAO which promotes bidentate coordination of the ligand to form an active (PNP)CrII(CH3)2 chelate complex. Rising bulkiness of R in AlR3 leads to only monodentate coordination of PNP to the Cr center by one P atom and increasing reduction to CrI to a maximum extend of around 30 % for AlOct3. This lowers the catalytic performance, which is mainly governed by the mode of PNP coordination rather than by the CrI content. ©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines
    (Weinheim : Wiley-VCH, 2021) Dai, Xingchao; Wang, Xinzhi; Rabeah, Jabor; Kreyenschulte, Carsten; Brückner, Angelika; Shi, Feng
    The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Tracing Active Sites in Supported Ni Catalysts during Butene Oligomerization by Operando Spectroscopy under Pressure
    (Washington, DC : ACS, 2016) Rabeah, Jabor; Radnik, Jörg; Briois, Valérie; Maschmeyer, Dietrich; Stochniol, Guido; Peitz, Stephan; Reeker, Helene; La Fontaine, Camille; Brückner, Angelika
    Supported Ni catalysts have been studied during the dimerization of butenes by operando electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) at 353 K and up to 16 bar. Single NiI/NiII shuttles were identified as active sites, whereby the conversion of initial NiI to NiII by oxidative addition of butene is obviously faster than the re-reduction of NiII to NiI by reductive elimination of the C8 product, rendering the equilibrium percentage of NiI small. At p ≤ 2 bar, NiI single sites form inactive Ni0 aggregates, while this is suppressed at higher pressure (∼12 bar). A reaction mechanism is proposed.