Search Results

Now showing 1 - 5 of 5
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation
    (Weinheim : Wiley-VCH, 2021) Wöllner, Sebastian; Nowak, Timothy; Zhang, Gui-Rong; Rockstroh, Nils; Ghanem, Hanadi; Rosiwal, Stefan; Brückner, Angelika; Etzold, Bastian J. M.
    Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed. © 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH
  • Item
    Synergistic Nanostructured MnOx/TiO2 Catalyst for Highly Selective Synthesis of Aromatic Imines
    (Weinheim : Wiley-VCH, 2021) Sudarsanam, Putla; Köckritz, Angela; Atia, Hanan; Amin, Mohamad Hassan; Brückner, Angelika
    This work reports the development of a synergistic nanostructured MnOx/TiO2 catalyst, with highly dispersed MnOx nanoparticles (4.5±1 nm) on shape-controlled TiO2 nanotubes (8–11 nm width and 120–280 nm length), for selective synthesis of valuable aromatic imines at industrially important conditions. Pristine TiO2 nanotubes exhibited 97 % imine selectivity at a 38.3 % benzylamine conversion, whereas very low imine selectivity was obtained over commercial TiO2 materials, indicating the catalytic significance of shape-controlled TiO2 nanotubes. The MnOx nanoparticle/TiO2 nanotube (10 wt% Mn) catalyst calcined at 400 °C showed the best activity with 95.6 % benzylamine conversion and 99.9 % imine selectivity. This catalyst exhibited good recyclability for four times and is effective for converting numerous benzylamines into higher yields of imines. The high catalytic performance of MnOx/TiO2 nanotubes was attributed to higher number of redox sites (Mn3+), high dispersion of Mn species, and shape-controlled structure of TiO2, indicating that this catalyst could be a promising candidate for selective oxidation reactions. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines
    (Weinheim : Wiley-VCH, 2021) Dai, Xingchao; Wang, Xinzhi; Rabeah, Jabor; Kreyenschulte, Carsten; Brückner, Angelika; Shi, Feng
    The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Hole-Transfer Agents
    (Weinheim : Wiley-VCH, 2021) Indra, Arindam; Beltrán-Suito, Rodrigo; Müller, Marco; Sivasankaran, Ramesh P.; Schwarze, Michael; Acharjya, Amitava; Pradhan, Bapi; Hofkens, Johan; Brückner, Angelika; Thomas, Arne; Menezes, Prashanth W.; Driess, Matthias
    Visible light-driven photocatalytic reduction of protons to H2 is considered a promising way of solar-to-chemical energy conversion. Effective transfer of the photogenerated electrons and holes to the surface of the photocatalyst by minimizing their recombination is essential for achieving a high photocatalytic activity. In general, a sacrificial electron donor is used as a hole scavenger to remove photogenerated holes from the valence band for the continuation of the photocatalytic hydrogen (H2 ) evolution process. Here, for the first time, the hole-transfer dynamics from Pt-loaded sol-gel-prepared graphitic carbon nitride (Pt-sg-CN) photocatalyst were investigated using different adsorbed hole acceptors along with a sacrificial agent (ascorbic acid). A significant increment (4.84 times) in H2 production was achieved by employing phenothiazine (PTZ) as the hole acceptor with continuous H2 production for 3 days. A detailed charge-transfer dynamic of the photocatalytic process in the presence of the hole acceptors was examined by time-resolved photoluminescence and in situ electron paramagnetic resonance studies.