Search Results

Now showing 1 - 10 of 16
  • Item
    Ni-In Synergy in CO2Hydrogenation to Methanol
    (Washington, DC : ACS Publications, 2021) Zhu, Jiadong; Cannizzaro, Francesco; Liu, Liang; Zhang, Hao; Kosinov, Nikolay; Filot, Ivo A.W.; Rabeah, Jabor; Brückner, Angelika; Hensen, Emiel J.M.
    Indium oxide (In2O3) is a promising catalyst for selective CH3OH synthesis from CO2but displays insufficient activity at low reaction temperatures. By screening a range of promoters (Co, Ni, Cu, and Pd) in combination with In2O3using flame spray pyrolysis (FSP) synthesis, Ni is identified as the most suitable first-row transition-metal promoter with similar performance as Pd-In2O3. NiO-In2O3was optimized by varying the Ni/In ratio using FSP. The resulting catalysts including In2O3and NiO end members have similar high specific surface areas and morphology. The main products of CO2hydrogenation are CH3OH and CO with CH4being only observed at high NiO loading (≥75 wt %). The highest CH3OH rate (∼0.25 gMeOH/(gcath), 250 °C, and 30 bar) is obtained for a NiO loading of 6 wt %. Characterization of the as-prepared catalysts reveals a strong interaction between Ni cations and In2O3at low NiO loading (≤6 wt %). H2-TPR points to a higher surface density of oxygen vacancy (Ov) due to Ni substitution. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electron paramagnetic resonance analysis of the used catalysts suggest that Ni cations can be reduced to Ni as single atoms and very small clusters during CO2hydrogenation. Supportive density functional theory calculations indicate that Ni promotion of CH3OH synthesis from CO2is mainly due to low-barrier H2dissociation on the reduced Ni surface species, facilitating hydrogenation of adsorbed CO2on Ov © 2021 The Authors. Published by American Chemical Society
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions
    (Washington, DC : ACS Publ., 2017) Cui, Xinjiang; Junge, Kathrin; Dai, Xingchao; Kreyenschulte, Carsten; Pohl, Marga-Martina; Wohlrab, Sebastian; Shi, Feng; Brückner, Angelika; Beller, Matthias
    Catalytic hydrosilylation represents a straightforward and atom-efficient methodology for the creation of C-Si bonds. In general, the application of homogeneous platinum complexes prevails in industry and academia. Herein, we describe the first heterogeneous single atom catalysts (SACs), which are conveniently prepared by decorating alumina nanorods with platinum atoms. The resulting stable material efficiently catalyzes hydrosilylation of industrially relevant olefins with high TON (≈105). A variety of substrates is selectively hydrosilylated including compounds with sensitive reducible and other functional groups (N, B, F, Cl). The single atom based catalyst shows significantly higher activity compared to related Pt nanoparticles.
  • Item
    Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production
    (Basel : MDPI, 2018-1-29) Sivasankaran, Ramesh P.; Rockstroh, Nils; Hollmann, Dirk; Kreyenschulte, Carsten R.; Agostini, Giovanni; Lund, Henrik; Acharjya, Amitava; Rabeah, Jabor; Bentrup, Ursula; Junge, Henrik; Thomas, Arne; Brückner, Angelika
    Solar hydrogen production from water could be a sustainable and environmentally friendly alternative to fossil energy carriers, yet so far photocatalysts active and stable enough for large-scale applications are not available, calling for advanced research efforts. In this work, H2 evolution rates of up to 1968 and 5188 μmol h−1 g−1 were obtained from aqueous solutions of triethanolamine (TEOA) and oxalic acid (OA), respectively, by irradiating composites of AgIn5S8 (AIS), mesoporous C3N4 (CN, surface area >150 m2/g) and ≤2 wt.% in-situ photodeposited Pt nanoparticles (NPs) with UV-vis (≥300 nm) and pure visible light (≥420 nm). Structural properties and electron transport in these materials were analyzed by XRD, STEM-HAADF, XPS, UV-vis-DRS, ATR-IR, photoluminescence and in situ-EPR spectroscopy. Initial H2 formation rates were highest for Pt/CN, yet with TEOA this catalyst deactivated by inclusion of Pt NPs in the matrix of CN (most pronounced at λ ≥ 300 nm) while it remained active with OA, since in this case Pt NPs were enriched on the outermost surface of CN. In Pt/AIS-CN catalysts, Pt NPs were preferentially deposited on the surface of the AIS phase which prevents them from inclusion in the CN phase but reduces simultaneously the initial H2 evolution rate. This suggests that AIS hinders transport of separated electrons from the CN conduction band to Pt NPs but retains the latter accessible by protons to produce H2.
  • Item
    Avoiding Pitfalls in Comparison of Activity and Selectivity of Solid Catalysts for Electrochemical HMF Oxidation
    (Weinheim : Wiley-VCH, 2021) Wöllner, Sebastian; Nowak, Timothy; Zhang, Gui-Rong; Rockstroh, Nils; Ghanem, Hanadi; Rosiwal, Stefan; Brückner, Angelika; Etzold, Bastian J. M.
    Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) offers a renewable approach to produce the value-added platform chemical 2,5-furandicarboxylic acid (FDCA). The key for the economic viability of this approach is to develop active and selective electrocatalysts. Nevertheless, a reliable catalyst evaluation protocol is still missing, leading to elusive conclusions on criteria for a high-performing catalyst. Herein, we demonstrate that besides the catalyst identity, secondary parameters such as materials of conductive substrates for the working electrode, concentration of the supporting electrolyte, and electrolyzer configurations have profound impact on the catalyst performance and thus need to be optimized before assessing the true activity of a catalyst. Moreover, we highlight the importance of those secondary parameters in suppressing side reactions, which has long been overlooked. The protocol is validated by evaluating the performance of free-standing Cu-foam, and CuCoO modified with NaPO2H2 and Ni, which were immobilized on boron-doped diamond (BDD) electrodes. Recommended practices and figure of merits in carefully evaluating the catalyst performance are proposed. © 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH
  • Item
    The Effect of Iron and Vanadium in VOy/Ce1-xFexO2-δ Catalysts in Low-Temperature Selective Catalytic Reduction of NOx by Ammonia
    (Weinheim : WileyY-VCH Verlag, 2020) Keller, Sonja; Agostini, Giovanni; Antoni, Hendrik; Kreyenschulte, Carsten R.; Atia, Hanan; Rabeah, Jabor; Bentrup, Ursula; Brückner, Angelika
    Supported VOy/Ce1-xFexO2-δ catalysts (x=0, 0.5, 0.1, 0.2) and bare supports were prepared and tested in selective catalytic reduction (SCR) of NOx by NH3 between 150 and 300 °C with a GHSV of 70 000 h−1. Iron was found to be beneficial for the activity of the pristine supports, reaching 80 % conversion at 275 °C. When vanadium was additionally introduced into the system, iron was found to be detrimental for NOx-conversion. To derive structure-reactivity relationships, V-free supports and VOy/Ce1-xFexO2-δ catalysts were characterized by XRD, XPS, Raman spectroscopy and TEM. In situ XANES, as well as operando DRIFTS and EPR measurements were performed to study the behavior of the catalysts under reaction conditions. Up to an iron content of x=0.1, a solid Ce1-xFexO2-δ solution was formed. Higher iron contents led to formation of iron oxide agglomerates. These agglomerates, as well as an increased amount of surface oxygen species were found to be responsible for increased NOx-conversion over of pure supports. For V-containing catalysts, an interaction of Fe and V centers could be found. Under reaction conditions, Fe3+ was preferentially reduced instead of V5+, decreasing the catalytic activity of VOy/Ce1-xFexO2-δ. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Synergistic Nanostructured MnOx/TiO2 Catalyst for Highly Selective Synthesis of Aromatic Imines
    (Weinheim : Wiley-VCH, 2021) Sudarsanam, Putla; Köckritz, Angela; Atia, Hanan; Amin, Mohamad Hassan; Brückner, Angelika
    This work reports the development of a synergistic nanostructured MnOx/TiO2 catalyst, with highly dispersed MnOx nanoparticles (4.5±1 nm) on shape-controlled TiO2 nanotubes (8–11 nm width and 120–280 nm length), for selective synthesis of valuable aromatic imines at industrially important conditions. Pristine TiO2 nanotubes exhibited 97 % imine selectivity at a 38.3 % benzylamine conversion, whereas very low imine selectivity was obtained over commercial TiO2 materials, indicating the catalytic significance of shape-controlled TiO2 nanotubes. The MnOx nanoparticle/TiO2 nanotube (10 wt% Mn) catalyst calcined at 400 °C showed the best activity with 95.6 % benzylamine conversion and 99.9 % imine selectivity. This catalyst exhibited good recyclability for four times and is effective for converting numerous benzylamines into higher yields of imines. The high catalytic performance of MnOx/TiO2 nanotubes was attributed to higher number of redox sites (Mn3+), high dispersion of Mn species, and shape-controlled structure of TiO2, indicating that this catalyst could be a promising candidate for selective oxidation reactions. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Highly selective visible light-induced Ti–O bond splitting in an ansa-titanocene dihydroxido complex
    (Cambridge : Soc., 2015) Godemann, Christian; Dura, Laura; Hollmann, Dirk; Grabow, Kathleen; Bentrup, Ursula; Jiao, Haijun; Schulz, Axel; Brückner, Angelika; Beweries, Torsten
    Irradiation of a substituted ansa-titanocene(IV) dihydroxido complex with visible light induces Ti–O bond dissociation. In contrast to previous studies on structurally similar unbridged complexes, no side reactions are observed and formation of the Ti(III) species is highly selective. The formation of OH radicals was proved using a biradicaloid species.
  • Item
    Determining the location of Co2+ in zeolites by UV-Vis diffuse reflection spectroscopy : A critical view
    (Basel : MDPI, 2020) Bellmann, Andrea; Rautenberg, Christine; Bentrup, Ursula; Brückner, Angelika
    UV-Vis spectroscopy as well as in situ FTIR spectroscopy of pyridine and CO adsorption were applied to determine the nature of Co species in microporous, mesoporous, and mixed oxide materials like Co-ZSM-5, Co/Na-ZSM-5, Co/Al-SBA-15, and Co/Al2O3-SiO2. Because all sample types show comparable UV-Vis spectra with a characteristic band triplet, the former described UV-Vis band deconvolution method for determination and quantification of individual cationic sites in the zeolite appears doubtful. This is also confirmed by results of pyridine and CO adsorption revealing that all Co-zeolite samples contain two types of Co2+ species located at exchange positions as well as in oxide-like clusters independent of the Co content, while in Co/Al-SBA-15 and Co/Al2O3-SiO2 only Co2+ species in oxide-like clusters occur. Consequently, the measured UV-Vis spectra represent not exclusively isolated Co2+ species, and the characteristic triplet band is not only related to γ-, β-, and α-type Co2+ sites in the zeolite but also to those dispersed on the surface of different oxide supports. The study demonstrates that for proper characterization of the formed Co species, the use of complementary methods is required. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions
    (Cambridge : RSC, 2017) Sherborne, Grant J.; Adomeit, Sven; Menzel, Robert; Rabeah, Jabor; Brückner, Angelika; Fielding, Mark R.; Willans, Charlotte E.; Nguyen, Bao N.
    A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.