Search Results

Now showing 1 - 2 of 2
  • Item
    The Gaia-ESO survey: Mapping the shape and evolution of the radial abundance gradients with open clusters
    (Les Ulis : EDP Sciences, 2023) Magrini, L.; Viscasillas Vázquez, C.; Spina, L.; Randich, S.; Romano, D.; Franciosini, E.; Recio-Blanco, A.; Nordlander, T.; D'orazi, V.; Baratella, M.; Smiljanic, R.; Dantas, M.L.L.; Pasquini, L.; Spitoni, E.; Casali, G.; Van Der Swaelmen, M.; Bensby, T.; Stonkute, E.; Feltzing, S.; Sacco, G.G.; Bragaglia, A.; Pancino, E.; Heiter, U.; Biazzo, K.; Gilmore, G.; Bergemann, M.; Tautvaišienė, G.; Worley, C.; Hourihane, A.; Gonneau, A.; Morbidelli, L.
    Context. The spatial distribution of elemental abundances and their time evolution are among the major constraints to disentangling the scenarios of formation and evolution of the Galaxy. Aims. In this paper we used the sample of open clusters available in the final release of the Gaia-ESO survey to trace the Galactic radial abundance and abundance-to-iron ratio gradients, and their time evolution. Methods. We selected member stars in 62 open clusters, with ages from 0.1 to about 7 Gyr, located in the Galactic thin disc at galactocentric radii (RGC) from about 6 to 21 kpc. We analysed the shape of the resulting [Fe/H] gradient, the average gradients [El/H] and [El/Fe] combining elements belonging to four different nucleosynthesis channels, and their individual abundance and abundance ratio gradients. We also investigated the time evolution of the gradients dividing open clusters in three age bins. Results. The [Fe/H] gradient has a slope of −0.054 dex kpc−1. It can be better approximated with a two-slope shape, steeper for RGC ≤ 11.2 kpc and flatter in the outer regions. We saw different behaviours for elements belonging to different channels. For the time evolution of the gradient, we found that the youngest clusters (age < 1 Gyr) in the inner disc have lower metallicity than their older counterparts and that they outline a flatter gradient. We considered some possible explanations, including the effects of gas inflow and migration. We suggest that the most likely one may be related to a bias introduced by the standard spectroscopic analysis producing lower metallicities in the analysis of low-gravity stars. Conclusions. To delineate the shape of the ‘true’ gradient, we should most likely limit our analysis to stars with low surface gravity log g >  2.5 and microturbulent parameter ξ <  1.8 km s−1. Based on this reduced sample, we can conclude that the gradient has minimally evolved over the time-frame outlined by the open clusters, indicating a slow and stationary formation of the thin disc over the last 3 Gyr. We found a secondary role of cluster migration in shaping the gradient, with a more prominent role of migration for the oldest clusters.
  • Item
    The Gaia-ESO Survey: Old super-metal-rich visitors from the inner Galaxy
    (Les Ulis : EDP Sciences, 2023) Dantas, M.L.L.; Smiljanic, R.; Boesso, R.; Rocha-Pinto, H.J.; Magrini, L.; Guiglion, G.; Tautvaišiene, G.; Gilmore, G.; Randich, S.; Bensby, T.; Bragaglia, A.; Bergemann, M.; Carraro, G.; Jofré, P.; Zaggia, S.
    Context. The solar vicinity is currently populated by a mix of stars with various chemo-dynamic properties, including stars with a high metallicity compared to the Sun. Dynamical processes such as churning and blurring are expected to relocate such metal-rich stars from the inner Galaxy to the solar region. Aims. We report the identification of a set of old super-metal-rich (+0.15 ≤ [Fe/H] ≤ +0.50) dwarf stars with low eccentricity orbits (e ≤ 0.2) that reach a maximum height from the Galactic plane in the range ≤0.5-1.5 kpc. We discuss their chemo-dynamic properties with the goal of understanding their potential origins. Methods. We used data from the internal Data Release 6 of the Gaia-ESO Survey. We selected stars observed at high resolution with abundances of 21 species of 18 individual elements (i.e. 21 dimensions). We applied a hierarchical clustering algorithm to group the stars with similar chemical abundances within the complete chemical abundance space. Orbits were integrated using astrometric data from Gaia and radial velocities from Gaia-ESO. Stellar ages were estimated using isochrones and a Bayesian method. Results. This set of super-metal-rich stars can be arranged into five subgroups, according to their chemical properties. Four of these groups seem to follow a chemical enrichment flow, where nearly all abundances increase in lockstep with Fe. The fifth subgroup shows different chemical characteristics. All the subgroups have the following features: median ages of the order of 7-9 Gyr (with five outlier stars of estimated younger age), solar or subsolar [Mg/Fe] ratios, maximum height from the Galactic plane in the range 0.5-1.5 kpc, low eccentricities (e ≤ 0.2), and a detachment from the expected metallicity gradient with guiding radius (which varies between ~6 and 9 kpc for the majority of the stars). Conclusions. The high metallicity of our stars is incompatible with a formation in the solar neighbourhood. Their dynamic properties agree with theoretical expectations that these stars travelled from the inner Galaxy due to blurring and, more importantly, to churning. We therefore suggest that most of the stars in this population originated in the inner regions of the Milky Way (inner disc and/or the bulge) and later migrated to the solar neighbourhood. The region where the stars originated had a complex chemical enrichment history, with contributions from supernovae types Ia and II, and possibly asymptotic giant branch stars as well.