Search Results

Now showing 1 - 2 of 2
  • Item
    A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
    (Katlenburg-Lindau : EGU, 2023) Boyer, Matthew; Aliaga, Diego; Pernov, Jakob Boyd; Angot, Hélène; Quéléver, Lauriane L. J.; Dada, Lubna; Heutte, Benjamin; Dall'Osto, Manuel; Beddows, David C. S.; Brasseur, Zoé; Beck, Ivo; Bucci, Silvia; Duetsch, Marina; Stohl, Andreas; Laurila, Tiia; Asmi, Eija; Massling, Andreas; Thomas, Daniel Charles; Nøjgaard, Jakob Klenø; Chan, Tak; Sharma, Sangeeta; Tunved, Peter; Krejci, Radovan; Hansson, Hans Christen; Bianchi, Federico; Lehtipalo, Katrianne; Wiedensohler, Alfred; Weinhold, Kay; Kulmala, Markku; Petäjä, Tuukka; Sipilä, Mikko; Schmale, Julia; Jokinen, Tuija
    The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019-2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January-March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.
  • Item
    High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
    (Columbus, Ohio : American Chemical Society, 2022) Shen, Jiali; Scholz, Wiebke; He, Xu-Cheng; Zhou, Putian; Marie, Guillaume; Wang, Mingyi; Marten, Ruby; Surdu, Mihnea; Rörup, Birte; Baalbaki, Rima; Amorim, Antonio; Ataei, Farnoush; Bell, David M.; Bertozzi, Barbara; Brasseur, Zoé; Caudillo, Lucía; Chen, Dexian; Chu, Biwu; Dada, Lubna; Duplissy, Jonathan; Finkenzeller, Henning; Granzin, Manuel; Guida, Roberto; Heinritzi, Martin; Hofbauer, Victoria; Iyer, Siddharth; Kemppainen, Deniz; Kong, Weimeng; Krechmer, Jordan E.; Kürten, Andreas; Lamkaddam, Houssni; Lee, Chuan Ping; Lopez, Brandon; Mahfouz, Naser G. A.; Manninen, Hanna E.; Massabò, Dario; Mauldin, Roy L.; Mentler, Bernhard; Müller, Tatjana; Pfeifer, Joschka; Philippov, Maxim; Piedehierro, Ana A.; Roldin, Pontus; Schobesberger, Siegfried; Simon, Mario; Stolzenburg, Dominik; Tham, Yee Jun; Tomé, António; Umo, Nsikanabasi Silas; Wang, Dongyu; Wang, Yonghong; Weber, Stefan K.; Welti, André; Wollesen de Jonge, Robin; Wu, Yusheng; Zauner-Wieczorek, Marcel; Zust, Felix; Baltensperger, Urs; Curtius, Joachim; Flagan, Richard C.; Hansel, Armin; Möhler, Ottmar; Petäjä, Tuukka; Volkamer, Rainer; Kulmala, Markku; Lehtipalo, Katrianne; Rissanen, Matti; Kirkby, Jasper; El-Haddad, Imad; Bianchi, Federico; Sipilä, Mikko; Donahue, Neil M.; Worsnop, Douglas R.
    Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.