Search Results

Now showing 1 - 5 of 5
  • Item
    Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt
    (Basel : MDPI, 2023) Monecke, Stefan; Bedewy, Amira K.; Müller, Elke; Braun, Sascha D.; Diezel, Celia; Elsheredy, Amel; Kader, Ola; Reinicke, Martin; Ghazal, Abeer; Rezk, Shahinda; Ehricht, Ralf
    The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt’s second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.
  • Item
    The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates
    (Basel : MDPI, 2021) Bernreiter-Hofer, Tanja; Schwarz, Lukas; Müller, Elke; Cabal-Rosel, Adriana; Korus, Maciej; Misic, Dusan; Frankenfeld, Katrin; Abraham, Kerstin; Grünzweil, Olivia; Weiss, Astrid; Feßler, Andrea T.; Allerberger, Franz; Schwarz, Stefan; Szostak, Michael P.; Ruppitsch, Werner; Ladinig, Andrea; Spergser, Joachim; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf; Loncaric, Igor
    Escherichia (E.) coli is the main causative pathogen of neonatal and post-weaning diarrhea and edema disease in swine production. There is a significant health concern due to an increasing number of human infections associated with food and/or environmental-borne pathogenic and multidrug-resistant E. coli worldwide. Monitoring the presence of pathogenic and antimicrobial-resistant E. coli isolates is essential for sustainable disease management in livestock and human medicine. A total of 102 E. coli isolates of diseased pigs were characterized by antimicrobial and biocide susceptibility testing. Antimicrobial resistance genes, including mobile colistin resistance genes, were analyzed by PCR and DNA sequencing. The quinolone resistance-determining regions of gyrA and parC in ciprofloxacin-resistant isolates were analyzed. Clonal relatedness was investigated by two-locus sequence typing (CH clonotyping). Phylotyping was performed by the Clermont multiplex PCR method. Virulence determinants were analyzed by customized DNA-based microarray technology developed in this study for fast and economic molecular multiplex typing. Thirty-five isolates were selected for whole-genome sequence-based analysis. Most isolates were resistant to ampicillin and tetracycline. Twenty-one isolates displayed an ESBL phenotype and one isolate an AmpC β-lactamase-producing phenotype. Three isolates had elevated colistin minimal inhibitory concentrations and carried the mcr-1 gene. Thirty-seven isolates displayed a multi-drug resistance phenotype. The most predominant β-lactamase gene classes were blaTEM-1 (56%) and blaCTX-M-1 (13.71%). Mutations in QRDR were observed in 14 ciprofloxacin-resistant isolates. CH clonotyping divided all isolates into 51 CH clonotypes. The majority of isolates belonged to phylogroup A. Sixty-four isolates could be assigned to defined pathotypes wherefrom UPEC was predominant. WGS revealed that the most predominant sequence type was ST100, followed by ST10. ST131 was detected twice in our analysis. This study highlights the importance of monitoring antimicrobial resistance and virulence properties of porcine E. coli isolates. This can be achieved by applying reliable, fast, economic and easy to perform technologies such as DNA-based microarray typing. The presence of high-risk pathogenic multi-drug resistant zoonotic clones, as well as those that are resistant to critically important antibiotics for humans, can pose a risk to public health. Improved protocols may be developed in swine farms for preventing infections, as well as the maintenance and distribution of the causative isolates.
  • Item
    Clonal Complexes Distribution of Staphylococcus aureus Isolates from Clinical Samples from the Caribbean Islands
    (Basel : MDPI, 2023) Monecke, Stefan; Akpaka, Patrick Eberechi; Smith, Margaret R.; Unakal, Chandrashekhar G.; Thoms Rodriguez, Camille-Ann; Ashraph, Khalil; Müller, Elke; Braun, Sascha D.; Diezel, Celia; Reinicke, Martin; Ehricht, Ralf
    The aim of this study was to comprehensively characterise S. aureus from the Caribbean Islands of Trinidad and Tobago, and Jamaica. A total of 101 S. aureus/argenteus isolates were collected in 2020, mainly from patients with skin and soft tissue infections. They were characterised by DNA microarray allowing the detection of ca. 170 target genes and assignment to clonal complexes (CC)s and strains. In addition, the in vitro production of Panton–Valentine leukocidin (PVL) was examined by an experimental lateral flow assay. Two isolates were identified as S. argenteus, CC2596. The remaining S. aureus isolates were assigned to 21 CCs. The PVL rate among methicillin-susceptible S. aureus (MSSA) isolates was high (38/101), and 37 of the 38 genotypically positive isolates also yielded positive lateral flow results. The isolate that did not produce PVL was genome-sequenced, and it was shown to have a frameshift mutation in agrC. The high rate of PVL genes can be attributed to the presence of a known local CC8–MSSA clone in Trinidad and Tobago (n = 12) and to CC152–MSSA (n = 15). In contrast to earlier surveys, the USA300 clone was not found, although one MSSA isolate carried the ACME element, probably being a mecA-deficient derivative of this strain. Ten isolates, all from Trinidad and Tobago, were identified as MRSA. The pandemic ST239–MRSA–III strain was still common (n = 7), but five isolates showed a composite SCCmec element not observed elsewhere. Three isolates were sequenced. That showed a group of genes (among others, speG, crzC, and ccrA/B-4) to be linked to its SCC element, as previously found in some CC5– and CC8–MRSA, as well as in S. epidermidis. The other three MRSA belonged to CC22, CC72, and CC88, indicating epidemiological connections to Africa and the Middle East.
  • Item
    The First Report of mcr-1-Carrying Escherichia coli Originating from Animals in Serbia
    (Basel : MDPI, 2021) Mišić, Dušan; Kiskaroly, Ferenc; Szostak, Michael P.; Cabal, Adriana; Ruppitsch, Werner; Bernreiter-Hofer, Tanja; Milovanovic, Viktoria; Feßler, Andrea T.; Allerberger, Franz; Spergser, Joachim; Müller, Elke; Schwarz, Stefan; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf; Korus, Maciej; Benković, Damir; Korzeniowska, Malgorzata; Loncaric, Igor
    The aim of this study was continuous monitoring of the presence of mcr-1 to mcr-5 genes in Enterobacterales isolated from cattle, pigs, and domestic poultry at intensive breeding facilities in Northern Vojvodina, Serbia, from 1 January 1 to 1 October 2020. Out of 2167 examined samples, mcr-1 was observed in five E. coli isolates originating from healthy turkeys. Four isolates belonged to the phylogenetic group B1, and one isolate to the phylogenetic group A. Detected E. coli serogenotypes (somatic O and flagellar H antigens) were O8:H25 and O29:H25. Core-genome multi-locus sequence typing (cgMLST) revealed three ST58 isolates clustering together in Clonal Complex (CC) 155 and two singletons of ST641-CC86 and ST410-CC23, respectively. Clonotyping revealed CH4-32 (n = 3), CH6-53 (n = 1) and CH4-24 (n = 1). In all isolates, the mcr-1 gene was located on a large IncX4 replicon type plasmid. Eight virulence-associated genes (VAGs) typical of avian pathogenic E. coli (APEC) (fyuA, fimH, hlyF, iss, ompT, sitA, traT, iroN) were detected in four isolates. These isolates were investigated for susceptibility to four biocides and revealed MIC values of 0.125% for glutardialdehyde, of 0.00003-0.00006% for chlorohexidine, of 4-6% for isopropanol and of 0.001-0.002% for benzalkonium chloride. All obtained MIC values of the tested biocides were comparable to the reference strain, with no indication of possible resistance. This is the first report of mcr-1.1-carrying E. coli from Serbia. Although only samples from turkeys were mcr-positive in this study, continuous monitoring of livestock samples is advised to prevent a spill-over from animals to humans.
  • Item
    ConsensusPrime—A Bioinformatic Pipeline for Ideal Consensus Primer Design
    (Basel : MDPI, 2022) Collatz, Maximilian; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf
    Background: High-quality oligonucleotides for molecular amplification and detection procedures of diverse target sequences depend on sequence homology. Processing input sequences and identifying homogeneous regions in alignments can be carried out by hand only if they are small and contain sequences of high similarity. Finding the best regions for large and inhomogeneous alignments needs to be automated. Results: The ConsensusPrime pipeline was developed to sort out redundant and technical interfering data in multiple sequence alignments and detect the most homologous regions from multiple sequences. It automates the prediction of optimal consensus primers for molecular analytical and sequence-based procedures/assays. Conclusion: ConsensusPrime is a fast and easy-to-use pipeline for predicting optimal consensus primers that is executable on local systems without depending on external resources and web services. An implementation in a Docker image ensures platform-independent executability and installability despite the combination of multiple programs. The source code and installation instructions are publicly available on GitHub.