Search Results

Now showing 1 - 5 of 5
  • Item
    Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade
    (Weinheim : Wiley-VCH, 2023) von Haugwitz, Gerlis; Donnelly, Kian; Di Filippo, Mara; Breite, Daniel; Phippard, Max; Schulze, Agnes; Wei, Ren; Baumann, Marcus; Bornscheuer, Uwe T.
    Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.
  • Item
    Estradiol Removal by Adsorptive Coating of a Microfiltration Membrane
    (Basel : MDPI, 2021) Niavarani, Zahra; Breite, Daniel; Prager, Andrea; Abel, Bernd; Schulze, Agnes
    This work demonstrates the enhancement of the adsorption properties of polyethersulfone (PES) microfiltration membranes for 17β-estradiol (E2) from water. This compound represents a highly potent endocrine-disrupting chemical (EDC). The PES membranes were modified with a hydrophilic coating functionalized by amide groups. The modification was performed by the interfacial reaction between hexamethylenediamine (HMD) or piperazine (PIP) as the amine monomer and trimesoyl chloride (TMC) or adipoyl chloride (ADC) as the acid monomer on the surface of the membrane using electron beam irradiation. The modified membranes and the untreated PES membrane were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water permeance measurements, water contact angle measurements, and adsorption experiments. Furthermore, the effects of simultaneous changes in four modification parameters: amine monomer types (HMD or PIP), acid monomer types (TMC or ADC), irradiation dosage (150 or 200 kGy), and the addition of toluene as a swelling agent, on the E2 adsorption capacity were investigated. The results showed that the adsorption capacities of modified PES membranes toward E2 are >60%, while the unmodified PES membrane had an adsorption capacity up to 30% for E2 under similar experimental conditions, i.e., an enhancement of a factor of 2. Next to the superior adsorption properties, the modified PES membranes maintain high water permeability and no pore blockage was observed. The highlighted results pave the way to develop efficient low-cost, stable, and high-performance adsorber membranes.
  • Item
    Membrane Functionalization in Pilot Scale: Roll‐to‐Roll Electron Beam System with Inline Contact Angle Determination
    (Weinheim : Wiley-VCH, 2021) Schulze, Agnes; Drößler, Lutz; Weiß, Steffen; Went, Marco; Abdul Latif, Amira; Breite, Daniel; Fischer, Kristina
    To increase the permeation performance and antifouling properties of polymer membranes, a one-step reaction using electron irradiation was developed. This process combines the surface activation of the membrane polymer and the simultaneous permanent immobilization of hydrophilic molecules. This technology can be applied to various polymers, flat sheet/hollow fiber membranes and all pore ranges. The roll-to-roll system developed for this enables all process steps including inline analysis for quality control of the membrane surface in a continuously operated system. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH
  • Item
    Reduction of biofouling of a microfiltration membrane using amide functionalities-Hydrophilization without changes in morphology
    (Basel : MDPI, 2020) Breite, Daniel; Went, Marco; Prager, Andrea; Kühnert, Mathias; Schulze, Agnes
    A major goal of membrane science is the improvement of the membrane performance and the reduction of fouling effects, which occur during most aqueous filtration applications. Increasing the surface hydrophilicity can improve the membrane performance (in case of aqueous media) and decelerates membrane fouling. In this study, a PES microfiltration membrane (14,600 L m−2 h−1 bar−1) was hydrophilized using a hydrophilic surface coating based on amide functionalities, converting the hydrophobic membrane surface (water contact angle, WCA: ~90°) into an extremely hydrophilic one (WCA: ~30°). The amide layer was created by first immobilizing piperazine to the membrane surface via electron beam irradiation. Subsequently, a reaction with 1,3,5-benzenetricarbonyl trichloride (TMC) was applied to generate an amide structure. The presented approach resulted in a hydrophilic membrane surface, while maintaining permeance of the membrane without pore blocking. All membranes were investigated regarding their permeance, porosity, average pore size, morphology (SEM), chemical composition (XPS), and wettability. Soxhlet extraction was carried out to demonstrate the stability of the applied coating. The improvement of the modified membranes was demonstrated using dead-end filtration of algae solutions. After three fouling cycles, about 60% of the initial permeance remain for the modified membranes, while only ~25% remain for the reference.
  • Item
    Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry
    (Amsterdam [u.a.] : Elsevier Science, 2021) Vogel, Kristina; Wei, Ren; Pfaff, Lara; Breite, Daniel; Al-Fathi, Hassan; Ortmann, Christian; Estrela-Lopis, Irina; Venus, Tom; Schulze, Agnes; Harms, Hauke; Bornscheuer, Uwe T.; Maskow, Thomas
    Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging from millimeter (microplastics, <5 mm) to nanometer (nanoplastics, NP, <100 nm) are apparently persistent and have adverse effects on ecosystems and human health. Current research therefore focuses on whether and to what extent microorganisms or enzymes can degrade these NP. In this study, we addressed the question of what information isothermal titration calorimetry, which tracks the heat of reaction of the chain scission of a polyester, can provide about the kinetics and completeness of the degradation process. The majority of the heat represents the cleavage energy of the ester bonds in polymer backbones providing real-time kinetic information. Calorimetry operates even in complex matrices. Using the example of the cutinase-catalyzed degradation of polyethylene terephthalate (PET) nanoparticles, we found that calorimetry (isothermal titration calorimetry-ITC) in combination with thermokinetic models is excellently suited for an in-depth analysis of the degradation processes of NP. For instance, we can separately quantify i) the enthalpy of surface adsorption ∆AdsH = 129 ± 2 kJ mol−1, ii) the enthalpy of the cleavage of the ester bonds ∆EBH = −58 ± 1.9 kJ mol−1 and the apparent equilibrium constant of the enzyme substrate complex K = 0.046 ± 0.015 g L−1. It could be determined that the heat production of PET NP degradation depends to 95% on the reaction heat and only to 5% on the adsorption heat. The fact that the percentage of cleaved ester bonds (η = 12.9 ± 2.4%) is quantifiable with the new method is of particular practical importance. The new method promises a quantification of enzymatic and microbial adsorption to NP and their degradation in mimicked real-world aquatic conditions.