Search Results

Now showing 1 - 2 of 2
  • Item
    Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects
    (Katlenburg-Lindau : EGU, 2018) Fry, Juliane L.; Brown, Steven S.; Middlebrook, Ann M.; Edwards, Peter M.; Campuzano-Jost, Pedro; Day, Douglas A.; Jimenez, José L.; Allen, Hannah M.; Ryerson, Thomas B.; Pollack, Ilana; Graus, Martin; Warneke, Carsten; de Gouw, Joost A.; Brock, Charles A.; Gilman, Jessica; Lerner, Brian M.; Dubé, William P.; Liao, Jin; Welti, André
    Nighttime reaction of nitrate radicals (NO3) with biogenic volatile organic compounds (BVOC) has been proposed as a potentially important but also highly uncertain source of secondary organic aerosol (SOA). The southeastern United States has both high BVOC and nitrogen oxide (NOx) emissions, resulting in a large model-predicted NO3-BVOC source of SOA. Coal-fired power plants in this region constitute substantial NOx emissions point sources into a nighttime atmosphere characterized by high regionally widespread concentrations of isoprene. In this paper, we exploit nighttime aircraft observations of these power plant plumes, in which NO3 radicals rapidly remove isoprene, to obtain field-based estimates of the secondary organic aerosol yield from NO3 + isoprene. Observed in-plume increases in nitrate aerosol are consistent with organic nitrate aerosol production from NO3 + isoprene, and these are used to determine molar SOA yields, for which the average over nine plumes is 9 % (±5 %). Corresponding mass yields depend on the assumed molecular formula for isoprene-NO3-SOA, but the average over nine plumes is 27 % (±14 %), on average larger than those previously measured in chamber studies (12 %-14 % mass yield as ΔOA / ΔVOC after oxidation of both double bonds). Yields are larger for longer plume ages. This suggests that ambient aging processes lead more effectively to condensable material than typical chamber conditions allow. We discuss potential mechanistic explanations for this difference, including longer ambient peroxy radical lifetimes and heterogeneous reactions of NO3-isoprene gas phase products. More in-depth studies are needed to better understand the aerosol yield and oxidation mechanism of NO3 radical + isoprene, a coupled anthropogenic-biogenic source of SOA that may be regionally significant.
  • Item
    Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection
    (Katlenburg-Lindau : Copernicus, 2017) Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.
    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ĝ1/4 280ĝ€nm in vacuum aerodynamic diameter. Over 33ĝ€000 particles are characterized as either prompt (27ĝ€%), delayed (15ĝ€%), or null (58ĝ€%), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80ĝ€% of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.