Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

On the anomalous optical conductivity dispersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model

2019, Chen, Shangzhi, Kühne, Philipp, Stanishev, Vallery, Knight, Sean, Brooke, Robert, Petsagkourakis, Ioannis, Crispin, Xavier, Schubert, Mathias, Darakchieva, Vanya, Jonsson, Magnus P.

Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization. © The Royal Society of Chemistry 2019.

Loading...
Thumbnail Image
Item

Nanocellulose and PEDOT:PSS composites and their applications

2022, Brooke, Robert, Lay, Makara, Jain, Karishma, Francon, Hugo, Say, Mehmet Girayhan, Belaineh, Dagmawi, Wang, Xin, Håkansson, Karl M. O., Wågberg, Lars, Engquist, Isak, Edberg, Jesper, Berggren, Magnus

The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics.