Search Results

Now showing 1 - 2 of 2
  • Item
    Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure
    (Dordrecht [u.a.] : Springer, 2009) Brovkin, V.; Petoukhov, V.; Claussen, M.; Bauer, E.; Archer, D.; Jaeger, C.
    We use a coupled climate-carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO 2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure. © 2008 The Author(s).
  • Item
    Quantifying the effect of vegetation dynamics on the climate of the last glacial maximum
    (München : European Geopyhsical Union, 2005) Jahn, A.; Claussen, M.; Ganopolski, A.; Brovkin, V.
    The importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO2 concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (-5.1°C) relative to (natural) present-day conditions is caused by the introduction of ice sheets into the model (-3.0°C), followed by the effect of lower atmospheric CO2 levels at the LGM (-1.5°C), while a synergy between these two factors appears to be very small on global average. The biogeophysical effects of changes in vegetation cover are found to cool the global LGM climate by 0.6°C. The latter are most pronounced in the northern high latitudes, where the taiga-tundra feedback causes annually averaged temperature changes of up to -2.0°C, while the radiative effect of lower atmospheric CO2 in this region only produces a cooling of 1.5°C. Hence, in this region, the temperature changes caused by vegetation dynamics at the LGM exceed the cooling due to lower atmospheric CO2 concentrations.