Search Results

Now showing 1 - 3 of 3
  • Item
    Synergistic effects of anionic/cationic dendrimers and levofloxacin on antibacterial activities
    (Basel : MDPI, 2019) Wrońska, Natalia; Majoral, Jean Pierre; Appelhans, Dietmar; Bryszewska, Maria; Lisowska, Katarzyna
    Despite the numerous studies on dendrimers for biomedical applications, the antibacterial activity of anionic phosphorus dendrimers has not been explored. In our research, we evaluated the antibacterial activity of modified polycationic and polyanionic dendrimers in combination with levofloxacin (LVFX) against Gram-negative (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. In the case of Gram-negative bacteria, we concluded that a combination of dendrimers and antibiotic gave satisfactory results due to a synergistic effect. The use of fluoroquinolone antibiotics, such as LVFX, not only caused resistance in disease-causing microorganisms but also increased environmental pollution. Therefore, reduction of drug dosage is of general interest. © 2019 by the authors.
  • Item
    Poly(propylene imine) dendrimers and amoxicillin as dual-action antibacterial agents
    (Basel : MDPI, 2015) Wrońska, Natalia; Felczak, Aleksandra; Zawadzka, Katarzyna; Poszepczyńska, Martyna; Różalska, Sylwia; Bryszewska, Maria; Appelhans, Dietmar; Lisowska, Katarzyna
    Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.
  • Item
    Silver Nanoparticles Surface-Modified with Carbosilane Dendrons as Carriers of Anticancer siRNA
    (Basel : Molecular Diversity Preservation International, 2020) Pędziwiatr-Werbicka, Elżbieta; Gorzkiewicz, Michał; Horodecka, Katarzyna; Abashkin, Viktar; Klajnert-Maculewicz, Barbara; Peña-González, Cornelia E.; Sánchez-Nieves, Javier; Gómez, Rafael; Javier de la Mata, F.; Bryszewska, Maria
    Gene therapy is a promising approach in cancer treatment; however, current methods have a number of limitations mainly due to the difficulty in delivering therapeutic nucleic acids to their sites of action. The application of non-viral carriers based on nanomaterials aims at protecting genetic material from degradation and enabling its effective intracellular transport. We proposed the use of silver nanoparticles (AgNPs) surface-modified with carbosilane dendrons as carriers of anticancer siRNA (siBcl-xl). Using gel electrophoresis, zeta potential and hydrodynamic diameter measurements, as well as transmission electron microscopy, we characterized AgNP:siRNA complexes and demonstrated the stability of nucleic acid in complexes in the presence of RNase. Hemolytic properties of free silver nanoparticles and complexes, their effect on lymphocyte proliferation and cytotoxic activity on HeLa cells were also examined. Confocal microscopy proved the effective cellular uptake of complexes, indicating the possible use of this type of silver nanoparticles as carriers of genetic material in gene therapy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.