Search Results

Now showing 1 - 4 of 4
  • Item
    Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus)
    (Lausanne : Frontiers Media, 2020) Fröhling, Antje; Bußler, Sara; Durek, Julia; Schlüter, Oliver K.
    The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product. © Copyright © 2020 Fröhling, Bußler, Durek and Schlüter.
  • Item
    Effect of blanching plus fermentation on selected functional properties of mealworm (Tenebrio molitor) powders
    (Basel : MDPI AG, 2020) Borremans, An; Bußler, Sara; Tchewonpi Sagu, Sorel; Rawel, Harshadrai; Schlüter, Oliver K.; Leen, Van Campenhout
    The aim of this study was to determine the effect of blanching followed by fermentation of mealworms (Tenebrio molitor) with commercial meat starter cultures on the functional properties of powders produced from the larvae. Full fat and defatted powder samples were prepared from non-fermented and fermented mealworm pastes. Then the crude protein, crude fat, and dry matter contents, pH, bulk density, colour, water and oil binding capacity, foaming capacity and stability, emulsion capacity and stability, protein solubility, quantity of free amino groups, and protein composition of the powders were evaluated. Regardless of the starter culture used, the blanching plus fermentation process reduced the crude and soluble protein contents of the full fat powders and in general impaired their water and oil binding, foaming, and emulsifying properties. Defatting of the powders improved most functional properties studied. The o-phthaldialdehyde assay revealed that the amount of free amino groups was higher in the fermented powders while sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the soluble proteins of the fermented powders were composed of molecules of lower molecular mass compared to non-fermented powders. As molecular sizes of the soluble proteins decreased, it was clear that the protein structure was also modified by the fermentation process, which in turn led to changes in functional properties. In general, it was concluded that fermentation of mealworms with blanching as a pre-treatment does not contribute to the functional properties studied in this work. Nevertheless, the results confirmed that the properties of non-fermented powders are comparable to other food protein sources. © 2020 by the authors.
  • Item
    Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position
    (Amsterdam [u.a.] : Elsevier, 2020) Weindl, Isabelle; Ost, Mario; Wiedmer, Petra; Schreiner, Monika; Neugart, Susanne; Klopsch, Rebecca; Kühnhold, Holger; Kloas, Werner; Henkel, Ina M.; Schlüter, Oliver; Bußler, Sara; Bellingrath-Kimura, Sonoko D.; Ma, Hua; Grune, Tilman; Rolinski, Susanne; Klaus, Susanne
    Many global health risks are related to what and how much we eat. At the same time, the production of food, especially from animal origin, contributes to environmental change at a scale that threatens boundaries of a safe operating space for humanity. Here we outline viable solutions how to reconcile healthy protein consumption and sustainable protein production which requires a solid, interdisciplinary evidence base. We review the role of proteins for human and ecosystem health, including physiological effects of dietary proteins, production potentials from agricultural and aquaculture systems, environmental impacts of protein production, and mitigation potentials of transforming current production systems. Various protein sources from plant and animal origin, including insects and fish, are discussed in the light of their health and environmental implications. Integration of available knowledge is essential to move from a dual problem description (“healthy diets versus environment”) towards approaches that frame the food challenge of reconciling human and ecosystem health in the context of planetary health. This endeavor requires a shifting focus from metrics at the level of macronutrients to whole diets and a better understanding of the full cascade of health effects caused by dietary proteins, including health risks from food-related environmental degradation. © 2020
  • Item
    Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.)
    (Basel : MDPI, 2021) Sagu, Sorel Tchewonpi; Landgräber, Eva; Henkel, Ina M; Huschek, Gerd; Homann, Thomas; Bußler, Sara; Schlüter, Oliver K.; Rawel, Harshadrai
    The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21% to 42% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8% and 14% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant.