Search Results

Now showing 1 - 3 of 3
  • Item
    Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries
    (London [u.a.] : RSC, 2020) Pfeifer, Kristina; Arnold, Stefanie; Budak, Öznil; Luo, Xianlin; Presser, Volker; Ehrenberg, Helmut; Dsoke, Sonia
    Electrodes based on alloying reactions for sodium-ion batteries (NIB) offer high specific capacity but require bespoken electrode material design to enable high performance stability. This work addresses that issue by systematically exploring the impact of carbon properties on antimony/carbon composite electrodes for NIBs. Since the Sb surface is covered by an insulating oxide layer, carbon additives are crucial for the percolation and electrochemical activity of Sb based anodes. Instead of using complex hybridization strategies, the ability of mechanical mixing to yield stable high-performance Sb/C sodium-ion battery (NIB) electrodes is shown. This is only possible by considering the physical, chemical, and structural features of the carbon phase. A comparison of carbon nanohorns, onion-like carbon, carbon black, and graphite as conductive additives is given in this work. The best performance is not triggered by the highest or lowest surface area, and not by highest or lowest heteroatom content, but by the best ability to homogenously distribute within the Sb matrix. The latter provides an optimum interaction between carbon and Sb and is best enabled by onion-like carbon. A remarkable rate performance is attained, electrode cracking caused by volume expansion is successfully prevented, and the homogeneity of the solid/electrolyte interphase is significantly improved as a result of it. With this composite electrode, a reversible capacity of 490 mA h g-1 at 0.1 A g-1 and even 300 mA g-1 at 8 A g-1 is obtained. Additionally, high stability with a capacity retention of 73% over 100 cycles is achieved at charge/discharge rates of 0.2 A g-1 This journal is © The Royal Society of Chemistry.
  • Item
    Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithium‐Ion and Sodium‐Ion Energy Storage
    (Hoboken, NJ : Wiley, 2020) Shim, Hwirim; Arnold, Stefanie; Budak, Öznil; Ulbricht, Maike; Srimuk, Pattarachai; Presser, Volker
    This study demonstrates the hybridization of Li4Ti5O12 (LTO) with different types of carbon onions synthesized from nanodiamonds. The carbon onions mixed with a Li4Ti5Ox precursor for sol–gel synthesis. These hybrid materials are tested as anodes for both lithium‐ion battery (LIB) and sodium‐ion battery (SIB). Electrochemical characterization for LIB application is carried out using 1 m LiPF6 in a 1:1 (by volume) ethylene carbonate and dimethyl carbonate as the electrolyte. For lithium‐ion intercalation, LTO hybridized with carbon onions from the inert‐gas route achieves an excellent electrochemical performance of 188 mAh g−1 at 10 mA g−1, which maintains 100 mAh g−1 at 1 A g−1 and has a cycling stability of 96% of initial capacity after 400 cycles, thereby outperforming both neat LTO and LTO with onions obtained via vacuum treatment. The performance of the best‐performing hybrid material (LTO with carbon onions from argon annealing) in an SIB is tested, using 1 m NaClO4 in ethylene/dimethyl/fluoroethylene carbonate (19:19:2 by mass) as the electrolyte. A maximum capacity of 102 mAh g−1 for the SIB system is obtained, with a capacity retention of 96% after 500 cycles.
  • Item
    Titanium Niobium Oxide Ti2 Nb10 O29 /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for High-Performance Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Budak, Öznil; Srimuk, Pattarachai; Aslan, Mesut; Shim, Hwirim; Borchardt, Lars; Presser, Volker
    This work introduces the facile and scalable two-step synthesis of Ti2 Nb10 O29 (TNO)/carbon hybrid material as a promising anode for lithium-ion batteries (LIBs). The first step consisted of a mechanically induced self-sustaining reaction via ball-milling at room temperature to produce titanium niobium carbide with a Ti and Nb stoichiometric ratio of 1 to 5. The second step involved the oxidation of as-synthesized titanium niobium carbide to produce TNO. Synthetic air yielded fully oxidized TNO, while annealing in CO2 resulted in TNO/carbon hybrids. The electrochemical performance for the hybrid and non-hybrid electrodes was surveyed in a narrow potential window (1.0-2.5 V vs. Li/Li+ ) and a large potential window (0.05-2.5 V vs. Li/Li+ ). The best hybrid material displayed a specific capacity of 350 mAh g-1 at a rate of 0.01 A g-1 (144 mAh g-1 at 1 A g-1 ) in the large potential window regime. The electrochemical performance of hybrid materials was superior compared to non-hybrid materials for operation within the large potential window. Due to the advantage of carbon in hybrid material, the rate handling was faster than that of the non-hybrid one. The hybrid materials displayed robust cycling stability and maintained ca. 70 % of their initial capacities after 500 cycles. In contrast, only ca. 26 % of the initial capacity was maintained after the first 40 cycles for non-hybrid materials. We also applied our hybrid material as an anode in a full-cell lithium-ion battery by coupling it with commercial LiMn2 O4 .