Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Approximation of SDEs: a stochastic sewing approach

2021, Butkovsky, Oleg, Dareiotis, Konstantinos, Gerencsér, Máté

We give a new take on the error analysis of approximations of stochastic differential equations (SDEs), utilizing and developing the stochastic sewing lemma of Lê (Electron J Probab 25:55, 2020. 10.1214/20-EJP442). This approach allows one to exploit regularization by noise effects in obtaining convergence rates. In our first application we show convergence (to our knowledge for the first time) of the Euler-Maruyama scheme for SDEs driven by fractional Brownian motions with non-regular drift. When the Hurst parameter is H∈(0,1) and the drift is Cα , α∈[0,1] and α>1-1/(2H) , we show the strong Lp and almost sure rates of convergence to be ((1/2+αH)∧1)-ε , for any ε>0 . Our conditions on the regularity of the drift are optimal in the sense that they coincide with the conditions needed for the strong uniqueness of solutions from Catellier and Gubinelli (Stoch Process Appl 126(8):2323-2366, 2016. 10.1016/j.spa.2016.02.002). In a second application we consider the approximation of SDEs driven by multiplicative standard Brownian noise where we derive the almost optimal rate of convergence 1/2-ε of the Euler-Maruyama scheme for Cα drift, for any ε,α>0 .

Loading...
Thumbnail Image
Item

Couplings via Comparison Principle and Exponential Ergodicity of SPDEs in the Hypoelliptic Setting

2020, Butkovsky, Oleg, Scheutzow, Michael

We develop a general framework for studying ergodicity of order-preserving Markov semigroups. We establish natural and in a certain sense optimal conditions for existence and uniqueness of the invariant measure and exponential convergence of transition probabilities of an order-preserving Markov process. As an application, we show exponential ergodicity and exponentially fast synchronization-by-noise of the stochastic reaction–diffusion equation in the hypoelliptic setting. This refines and complements corresponding results of Hairer and Mattingly (Electron J Probab 16:658–738, 2011). © 2020, The Author(s).

Loading...
Thumbnail Image
Item

RKHS regularization of singular local stochastic volatility McKean--Vlasov models

2022, Bayer, Christian, Belomestny, Denis, Butkovsky, Oleg, Schoenmakers, John G. M.

Motivated by the challenges related to the calibration of financial models, we consider the problem of solving numerically a singular McKean-Vlasov equation, which represents a singular local stochastic volatility model. Whilst such models are quite popular among practitioners, unfortunately, its well-posedness has not been fully understood yet and, in general, is possibly not guaranteed at all. We develop a novel regularization approach based on the reproducing kernel Hilbert space (RKHS) technique and show that the regularized model is well-posed. Furthermore, we prove propagation of chaos. We demonstrate numerically that a thus regularized model is able to perfectly replicate option prices due to typical local volatility models. Our results are also applicable to more general McKean--Vlasov equations.