Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Giant thermal expansion and α-precipitation pathways in Ti-Alloys

2017, Bönisch, M., Panigrahi, A., Stoica, M., Calin, M., Ahrens, E., Zehetbauer, M., Skrotzki, W., Eckert, J.

Ti-Alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10-6 to-95.1×10-6 °C-1) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″lean and α″iso. Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-Alloys in general.

Loading...
Thumbnail Image
Item

Effects of new beta-type Ti-40Nb implant materials, brain-derived neurotrophic factor, acetylcholine and nicotine on human mesenchymal stem cells of osteoporotic and non osteoporotic donors

2018, Kauschke, V., Gebert, A., Calin, M., Eckert, J., Scheich, S., Heiss, C., Lips, K.S.

Introduction Treatment of osteoporotic fractures is still challenging and an urgent need exists for new materials, better adapted to osteoporotic bone by adjusted Young’s modulus, appropriate surface modification and pharmaceuticals. Materials and methods Titanium-40-niobium alloys, mechanically ground or additionally etched and titanium-6-alu-minium-4-vanadium were analyzed in combination with brain-derived neurotrophic factor, acetylcholine and nicotine to determine their effects on human mesenchymal stem cells in vitro over 21 days using lactate dehydrogenase and alkaline phosphatase assays, live cell imaging and immunofluorescence microscopy. Results Cell number of human mesenchymal stem cells of osteoporotic donors was increased after 14 d in presence of ground titanium-40-niobium or titanium-6-aluminium-4-vanadium, together with brain-derived neurotrophic factor. Cell number of human mesenchymal stem cells of non osteoporotic donors increased after 21 d in presence of titanium-6-aluminium-4-vanadium without pharmaceuticals. No significant increase was measured for ground or etched titanium-40-niobium after 21 d. Osteoblast differentiation of osteoporotic donors was significantly higher than in non osteoporotic donors after 21 d in presence of etched, ground titanium-40-niobium or titanium-6-aluminium-4-vanadium accompanied by all pharmaceuticals tested. In presence of all alloys tested brain-derived neurotrophic factor, acetylcholine and nicotine increased differentiation of cells of osteoporotic donors and accelerated it in non osteoporotic donors. Conclusion We conclude that ground titanium-40-niobium and brain-derived neurotrophic factor might be most suitable for subsequent in vivo testing.

Loading...
Thumbnail Image
Item

Routes to control diffusive pathways and thermal expansion in Ti-alloys

2020, Bönisch, M., Stoica, M., Calin, M.

β-stabilized Ti-alloys present several unexplored and intriguing surprises in relation to orthorhombic α″ phases. Among them are (i) the diffusion-controlled formation of transitional α″iso, α″lean and α″rich phases and ii) the highly anisotropic thermal expansion of martensitic α″. Using the prototypical Ti-Nb system, we demonstrate that the thermodynamic energy landscape reveals formation pathways for the diffusional forms of α″ and may lead to a stable β-phase miscibility gap. In this way, we derive temperature-composition criteria for the occurrence of α″iso and resolve reaction sequences during thermal cycling. Moreover, we show that the thermal expansion anisotropy of martensitic α″ gives rise to directions of zero thermal strain depending on Nb content. Utilizing this knowledge, we propose processing routes to achieve null linear expansion in α″ containing Ti-alloys. These concepts are expected to be transferable to other Ti-alloys and offer new avenues for their tailoring and technological exploitation.