Search Results

Now showing 1 - 4 of 4
  • Item
    Deformation-induced martensitic transformation in Cu-Zr-Zn bulk metallic glass composites
    (Basel : MDPI, 2015) Wu, Dianyu; Song, Kaikai; Cao, Chongde; Li, Ran; Wang, Gang; Wu, Yuan; Wan, Feng; Ding, Fuli; Shi, Yue; Bai, Xiaojun; Kaban, Ivan; Eckert, Jürgen
    The microstructures and mechanical properties of (Cu0.5Zr0.5)100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. %) bulk metallic glass (BMG) composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the microstructures of the as-quenched samples with low Zn additions (x = 0, 1.5, and 2.5 at. %), while B2 CuZr and amorphous phases being accompanied with minor martensitic crystals form at a higher Zn content (x = 4.5, 7, 10, and 14 at. %). The fabricated Cu-Zr-Zn BMG composites exhibit macroscopically appreciable compressive plastic strain and obvious work-hardening due to the formation of multiple shear bands and the deformation-induced martensitic transformation (MT) within B2 crystals. The present BMG composites could be a good candidate as high-performance structural materials.
  • Item
    Mechanical and structural investigation of porous bulk metallic glasses
    (Basel : MDPI, 2015) Wu, Dianyu; Song, Kaikai; Cao, Chongde; Li, Ran; Wang, Gang; Wu, Yuan; Wan, Feng; Ding, Fuli; Shi, Yue; Bai, Xiaojun; Kaban, Ivan; Eckert, Jürgen
    The intrinsic properties of advanced alloy systems can be altered by changing their microstructural features. Here, we present a highly efficient method to produce and characterize structures with systematically-designed pores embedded inside. The fabrication stage involves a combination of photolithography and deep reactive ion etching of a Si template replicated using the concept of thermoplastic forming. Pt- and Zr-based bulk metallic glasses (BMGs) were evaluated through uniaxial tensile test, followed by scanning electron microscope (SEM) fractographic and shear band analysis. Compositional investigation of the fracture surface performed via energy dispersive X-ray spectroscopy (EDX), as well as Auger spectroscopy (AES) shows a moderate amount of interdiffusion (5 at.% maximum) of the constituent elements between the deformed and undeformed regions. Furthermore, length-scale effects on the mechanical behavior of porous BMGs were explored through molecular dynamics (MD) simulations, where shear band formation is observed for a material width of 18 nm.
  • Item
    High-energy magnetic excitations from heavy quasiparticles in CeCu2Si2
    ([London] : Nature Publishing Group, 2021) Song, Yu; Wang, Weiyi; Cao, Chongde; Yamani, Zahra; Xu, Yuanji; Sheng, Yutao; Löser, Wolfgang; Qiu, Yiming; Yang, Yi-feng; Birgeneau, Robert J.; Dai, Pengcheng
    Magnetic fluctuations is the leading candidate for pairing in cuprate, iron-based, and heavy fermion superconductors. This view is challenged by the recent discovery of nodeless superconductivity in CeCu2Si2, and calls for a detailed understanding of the corresponding magnetic fluctuations. Here, we mapped out the magnetic excitations in superconducting (S-type) CeCu2Si2 using inelastic neutron scattering, finding a strongly asymmetric dispersion for E ≲ 1.5 meV, which at higher energies evolves into broad columnar magnetic excitations that extend to E ≳ 5 meV. While low-energy magnetic excitations exhibit marked three-dimensional characteristics, the high-energy magnetic excitations in CeCu2Si2 are almost two-dimensional, reminiscent of paramagnons found in cuprate and iron-based superconductors. By comparing our experimental findings with calculations in the random-phase approximation,we find that the magnetic excitations in CeCu2Si2 arise from quasiparticles associated with its heavy electron band, which are also responsible for superconductivity. Our results provide a basis for understanding magnetism and superconductivity in CeCu2Si2, and demonstrate the utility of neutron scattering in probing band renormalization in heavy fermion metals.
  • Item
    Distinct itinerant spin-density waves and local-moment antiferromagnetism in an intermetallic ErPd2 Si2 single crystal
    (London : Nature Publishing Group, 2015) Li, Hai-Feng; Cao, Chongde; Wildes, Andrew; Schmidt, Wolfgang; Schmalzl, Karin; Hou, Binyang; Regnault, Louis-Pierre; Zhang, Cong; Meuffels, Paul; Löser, Wolfgang; Roth, Georg
    Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors at Q± = (H ± 0.557(1), 0, L ± 0.150(1)) and QC = (H ± 0.564(1), 0, L), where (H, L) are allowed Miller indices, in an ErPd2Si2 single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The Q± modulation may be attributed to localized 4f moments while the QC correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd2Si2 represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix.