Search Results

Now showing 1 - 3 of 3
  • Item
    Ba termination of Ge(001) studied with STM
    (Bristol : IOP Publishing, 2015) Koczorowski, W.; Grzela, T.; Radny, M.W.; Schofield, S.R.; Capellini, G.; Czajka, R.; Schroeder, T.; Curson, N.J.
    We use controlled annealing to tune the interfacial properties of a sub-monolayer and monolayer coverages of Ba atoms deposited on Ge(001), enabling the generation of either of two fundamentally distinct interfacial phases, as revealed by scanning tunneling microscopy. Firstly we identify the two key structural phases associated with this adsorption system, namely on-top adsorption and surface alloy formation, by performing a deposition and annealing experiment at a coverage low enough (~0.15 ML) that isolated Ba-related features can be individually resolved. Subsequently we investigate the monolayer coverage case, of interest for passivation schemes of future Ge based devices, for which we find that the thermal evaporation of Ba onto a Ge(001) surface at room temperature results in on-top adsorption. This separation (lack of intermixing) between Ba and Ge layers is retained through successive annealing steps to temperatures of 470, 570, 670 and 770 K although a gradual ordering of the Ba layer is observed at 570 K and above, accompanied by a decrease in Ba layer density. Annealing above 770 K produces the 2D surface alloy phase accompanied by strain relief through monolayer height trench formation. An annealing temperature of 1070 K sees a further change in surface morphology but retention of the 2D surface alloy characteristic. These results are discussed in view of their possible implications for future semiconductor integrated circuit technology.
  • Item
    The thermal stability of epitaxial GeSn layers
    (Melville, NY : AIP Publ., 2018) Zaumseil, P.; Hou, Y.; Schubert, M.A.; von den Driesch, N.; Stange, D.; Rainko, D.; Virgilio, M.; Buca, D.; Capellini, G.
    We report on the direct observation of lattice relaxation and Sn segregation of GeSn/Ge/Si heterostructures under annealing. We investigated strained and partially relaxed epi-layers with Sn content in the 5 at. %-12 at. % range. In relaxed samples, we observe a further strain relaxation followed by a sudden Sn segregation, resulting in the separation of a β-Sn phase. In pseudomorphic samples, a slower segregation process progressively leads to the accumulation of Sn at the surface only. The different behaviors are explained by the role of dislocations in the Sn diffusion process. The positive impact of annealing on optical emission is also discussed.
  • Item
    Modeling of edge-emitting lasers based on tensile strained germanium microstrips
    (New York, NY : IEEE, 2015) Peschka, D.; Thomas, M.; Glitzky, A.; Nürnberg, R.; Gärtner, K.; Virgilio, M.; Guha, S.; Schroeder, T.; Capellini, G.; Koprucki, Th.
    In this paper, we present a thorough modeling of an edge-emitting laser based on strained germanium (Ge) microstrips. The full-band structure of the tensile strained Ge layer enters the calculation of optical properties. Material gain for strained Ge is used in the 2D simulation of the carrier transport and of the optical field within a cross section of the microstrips orthogonal to the optical cavity. We study optoelectronic properties of the device for two different designs. The simulation results are very promising as they show feasible ways toward Ge emitter devices with lower threshold currents and higher efficiency as published insofar.